scholarly journals NONPERTURBATIVE EFFECTIVE MODEL FOR THE HIGGS SECTOR OF THE STANDARD MODEL

2010 ◽  
Vol 25 (32) ◽  
pp. 5865-5884 ◽  
Author(s):  
FABIO SIRINGO ◽  
LUCA MAROTTA

A nonperturbative effective model is derived for the Higgs sector of the Standard Model which is described by a simple scalar theory. The renormalized couplings are determined by the derivatives of the Gaussian effective potential that are known to be the sum of infinite bubble graphs contributing to the vertex functions. A good agreement has been found with strong coupling lattice simulations when a comparison can be made.

1993 ◽  
Vol 30 ◽  
pp. 643-646 ◽  
Author(s):  
Wolfgang Bock ◽  
Christoph Frick ◽  
Jan Smit ◽  
Jeroen C. Vink

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Timothy Cohen ◽  
Nathaniel Craig ◽  
Xiaochuan Lu ◽  
Dave Sutherland

Abstract We derive the scale of unitarity violation from the geometry of Effective Field Theory (EFT) extensions of the Standard Model Higgs sector. The high-energy behavior of amplitudes with more than four scalar legs depends on derivatives of geometric invariants with respect to the physical Higgs field h, such that higher-point amplitudes begin to reconstruct the scalar manifold away from our vacuum. In theories whose low-energy limit can be described by the Higgs EFT (HEFT) but not the Standard Model EFT (SMEFT), non-analyticities in the vicinity of our vacuum limit the radius of convergence of geometric invariants, leading to unitarity violation at energies below 4πv. Our results unify approaches to the HEFT/SMEFT dichotomy based on unitarity, analyticity, and geometry, and more broadly illustrate the sense in which observables probe the geometry of an EFT. Along the way, we provide novel basis-independent results for Goldstone/Higgs boson scattering amplitudes expressed in terms of geometric covariant quantities.


1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


2005 ◽  
Vol 20 (36) ◽  
pp. 2767-2774 ◽  
Author(s):  
ERNEST MA

If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.


1989 ◽  
Vol 04 (20) ◽  
pp. 1945-1954 ◽  
Author(s):  
M. CIUCHINI

The 2H model that resembles the Higgs sector of the minimal N=1 SUSY version of the standard model is considered and the contribution of the charged Higgs boson to the rate of the b→sl+l− transition is studied as a function of the free parameters MH, Mt and the squared two Higgs doublet v.e.v. ratio r. It is shown that this process can be suppressed by the charged Higgs boson contribution and that in general it is not very sensitive to its presence unless (SUSY-forbidden) values of r>1 are assumed.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2144
Author(s):  
Arnaud Ferrari ◽  
Nikolaos Rompotis

One doublet of complex scalar fields is the minimal content of the Higgs sector in order to achieve spontaneous electroweak symmetry breaking and, in turn, to generate the masses of fundamental particles in the Standard Model. However, several theories beyond the Standard Model predict a nonminimal Higgs sector and introduce additional singlets, doublets or even higher-order weak isospin representations, thereby yielding additional Higgs bosons. With its high proton–proton collision energy (13 TeV during Run-2), the Large Hadron Collider opens a new window towards the exploration of extended Higgs sectors. This review article summarises the current state-of-the-art experimental results recently obtained in searches for new neutral and charged Higgs bosons with a partial or full Run-2 dataset.


2014 ◽  
Vol 31 ◽  
pp. 1460288 ◽  
Author(s):  
R. Mankel ◽  

While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the Standard Model interpretation, various possibilities for extended Higgs sectors are being considered. The minimal supersymmetric extension (MSSM) features two Higgs doublets resulting in five physical Higgs bosons, which are subject to direct searches. Alternatively, more generic Two-Higgs Doublet models (2HDM) are used for the interpretation of results. The Next-to-Minimal Supersymmetric Model (NMSSM) has a more complex Higgs sector with seven physical states. Also exotic Higgs bosons decaying to invisible final states are considered. This article summarizes recent findings based on results from collider experiments.


2007 ◽  
Vol 22 (38) ◽  
pp. 2909-2916
Author(s):  
G. LÓPEZ CASTRO ◽  
J. PESTIEAU

We propose some empirical formulas relating the masses of the heaviest particles in the standard model (the W, Z, H bosons and the t quark) to the charge of the positron e and the Higgs condensate v. The relations for the masses of gauge bosons mW = (1+e)v/4 and [Formula: see text] are in good agreement with experimental values. By requiring the electroweak standard model to be free from quadratic divergences at the one-loop level, we find: [Formula: see text] and [Formula: see text], or the very simple ratio (mt/mH)2 = e.


1995 ◽  
Vol 10 (04) ◽  
pp. 443-464 ◽  
Author(s):  
BERND A. KNIEHL

We review recent theoretical progress in the computation of radiative corrections beyond one loop within the standard model of electroweak interactions, in both the gauge and Higgs sectors. In the gauge sector, we discuss universal corrections of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], and those due to virtual [Formula: see text]-threshold effects, as well as specific corrections to [Formula: see text] of [Formula: see text], [Formula: see text] and [Formula: see text] including finite-mb effects. We also present an update of the hadronic contributions to Δα. Theoretical uncertainties, other than those due to the lack of knowledge of MH and mt, are estimated. In the Higgs sector, we report on the [Formula: see text] corrections to [Formula: see text] including those which are specific for the [Formula: see text] mode, the [Formula: see text] corrections to [Formula: see text] including the finite-mq terms, and the [Formula: see text] corrections to Γ(H → gg).


Sign in / Sign up

Export Citation Format

Share Document