EXACT WAVE FUNCTIONS OF MULTI-SPECIES ANYON QUANTUM MECHANICS

1993 ◽  
Vol 08 (29) ◽  
pp. 5101-5113 ◽  
Author(s):  
K.H. CHO ◽  
CHAIHO RIM ◽  
D.S. SOH

We investigate the many-anyon quantum-mechanical system of multi-species and obtain algebraically the energy and the angular momentum eigenstates in a harmonic potential well, in a constant magnetic field and of free system using ladder operators. The eigenvalues and their multiplicity of the eigenstates are given.

1989 ◽  
Vol 04 (26) ◽  
pp. 2519-2529 ◽  
Author(s):  
STEPHANE DURAND ◽  
LUC VINET

Conformal parasupersymmetry of order 2 is exemplified using a one-dimensional quantum mechanical system. Symmetry generators are seen to realize trilinear structure relations. The relevant representations of this novel symmetry algebra are constructed and shown to allow for a complete determination of the energy spectrum and wave functions of the system.


2003 ◽  
Vol 18 (02) ◽  
pp. 271-292 ◽  
Author(s):  
C. QUESNE ◽  
N. VANSTEENKISTE

Pseudosupersymmetric quantum mechanics (PsSSQM), based upon the use of pseudofermions, was introduced in the context of a new Kemmer equation describing charged vector mesons interacting with an external constant magnetic field. Here we construct the complete explicit solution for its realization in terms of two superpotentials, both equal or unequal. We prove that any orthosupersymmetric quantum mechanical system has a pseudosupersymmetry and give conditions under which a pseudosupersymmetric one may be described by orthosupersymmetries of order two. We propose two new matrix realizations of PsSSQM in terms of the generators of a generalized deformed oscillator algebra (GDOA) and relate them to the cases of equal or unequal superpotentials, respectively. We demonstrate that these matrix realizations are fully reducible and that their irreducible components provide two distinct sets of bosonized operators realizing PsSSQM and corresponding to nonlinear spectra. We relate such results to some previous ones obtained for a GDOA connected with a C3-extended oscillator algebra (where C3 = ℤ3) in the case of linear spectra.


2012 ◽  
Vol 90 (2) ◽  
pp. 187-191 ◽  
Author(s):  
R. MacKenzie ◽  
M. Pineault ◽  
L. Renaud-Desjardins

A condition on the Hamiltonian of an isospectral time-dependent quantum mechanical system is derived, which, if satisfied, implies optimal adiabaticity (defined later). The condition is expressed in terms of the Hamiltonian and the evolution operator related to it. Because the latter depends in a complicated way on the Hamiltonian, it is not yet clear how the condition can be used to extract useful information about the optimal Hamiltonian analytically. The condition is tested on an exactly-soluble time-dependent problem (a spin in a magnetic field), where perfectly adiabatic evolution can be easily identified.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


2008 ◽  
Vol 86 (8) ◽  
pp. 953-960 ◽  
Author(s):  
G R Hoy ◽  
J Odeurs

In 1937, Rabi treated the problem of a magnetic moment in an applied time-dependent magnetic field. This became the well-known magnetic resonance situation. The Hamiltonian is often taken to be [Formula: see text] = – µ · [[Formula: see text]]. In this paper, the Rabi oscillations formula, describing the spin flipping, is derived in an unusual way. The method uses a modification of a method due to Heitler. In the Heitler method, one uses the Interaction Picture of quantum mechanics. Due to the time-dependence in the problem, the usual Heitler method fails. However, the solution is found after quantizing the electromagnetic field. To better understand the origin of the spin flipping, the analogous time-independent problem is also solved. It is made clear that the origin of the Rabi oscillations is not due to the time-dependent magnetic field. The spin flipping is essentially due to the fact that the spin system, when initially prepared, is not in an eigenstate of the Hamiltonian. Thus, as times progresses, the system naturally evolves through the noneigenstate basis states.PACS Nos.: 03.65.–w, 76.20.+q


1970 ◽  
Vol 48 (14) ◽  
pp. 1681-1686 ◽  
Author(s):  
Maurice Cohen ◽  
Tova Feldmann

Rigorous lower and upper bounds to the eigenvalues E of a quantum-mechanical system with Hamiltonian operator H are derived from the Gramian determinant of a set of suitably chosen functions. This procedure, which also yields a rigorous upper bound to the overlap between a given trial function and the corresponding (unknown) exact eigenfunction, is shown to be equivalent to a generalization of the classical procedure of Weinstein. In the absence of a rigorous lower bound to the overlap, the present procedure provides a practical method of assessing the influence of the ground state on a given trial function for an excited state.


1978 ◽  
Vol 10 (4) ◽  
pp. 725-729 ◽  
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Aaron C.H. Davey

The father of quantum mechanics, Erwin Schrodinger, was one of the most important figures in the development of quantum theory. He is perhaps best known for his contribution of the wave equation, which would later result in his winning of the Nobel Prize for Physics in 1933. The Schrodinger wave equation describes the quantum mechanical behaviour of particles and explores how the Schrodinger wave functions of a system change over time. This project is concerned about exploring the one-dimensional case of the Schrodinger wave equation in a harmonic oscillator system. We will give the solutions, called eigenfunctions, of the equation that satisfy certain conditions. Furthermore, we will show that this happens only for particular values called eigenvalues.


2020 ◽  
Author(s):  
Canlun Yuan Yuan

Abstract Although this paper is the inheritance and development of Copenhagen quantum mechanics theory, it is a brand-new theory, because although quantum mechanics has achieved great success, its physical significance still needs to be explored. In this paper, the concept of generalized field and generalized quantity is introduced. From the behavior of generalized field in potential well, the conclusion that generalized field exists with energy in the form of standing wave in potential well is obtained. In this paper, only one physical model is used: "the generalized field forms wave, which is wave function". With a basic assumption of mvλ=h , the Einstein de Broglie relation is derived, and the wave function has the meaning of generalized field. Every conclusion given in this paper has clear and obvious physical significance, which makes quantum mechanical problems simple and clear. At the same time, the new atom model is established, and the problems of electron transition, electron spin, electron emission and absorption are discussed.


1978 ◽  
Vol 10 (04) ◽  
pp. 725-729
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


Sign in / Sign up

Export Citation Format

Share Document