ANISOTROPIC PSEUDOGAP IN THE HALF-FILLING TWO-DIMENSIONAL HUBBARD MODEL AT FINITE TEMPERATURE

2000 ◽  
Vol 14 (21) ◽  
pp. 2271-2286
Author(s):  
TAIICHIRO SAIKAWA ◽  
ALVARO FERRAZ

We have studied the pseudogap formation in the single-particle spectra of the half-filling two-dimensional Hubbard model. Using a Green's function with the one-loop self-energy correction of the spin and charge fluctuations, we have numerically calculated the self-energy, the spectral function, and the density of states in the weak-coupling regime at finite temperatures. Pseudogap formations have been observed in both the density of states and the spectral function at the Fermi level. The pseudogap in the spectral function is explained by the non-Fermi-liquid-like nature of the self-energy. The anomalous behavior in the self-energy is caused by both the strong antiferromagnetic spin fluctuation and the nesting condition on the non-interacting Fermi surface. In the present approximation, we find a logarithmic singularity in the integrand of the self-energy imaginary part. The pseudogap in the spectral function is highly momentum dependent on the Fermi surface. This anisotropy of the pseudogap is produced by the flatness of the band dispersion around the saddle point rather than the nesting condition on the Fermi level.

2016 ◽  
Vol 93 (19) ◽  
Author(s):  
P. Pudleiner ◽  
T. Schäfer ◽  
D. Rost ◽  
G. Li ◽  
K. Held ◽  
...  

2005 ◽  
Vol 6 (3) ◽  
pp. 449-483 ◽  
Author(s):  
Stéphane Afchain ◽  
Jacques Magnen ◽  
Vincent Rivasseau

2003 ◽  
Vol 17 (29n30) ◽  
pp. 1501-1515
Author(s):  
EUGEN-VICTOR MACOCIAN

In this article, we perform a self-consistent calculation for the self-energy, based on the pairing mechanism for the two-dimensional phenomenological model below half filling. The non-Fermi versus Fermi liquid behavior is analyzed and the self-energies are compared. We also investigate the doping dependence of the pseudogap in the underdoped regime of the phase diagram of cuprates superconductors. Comparing the obtained results with experimental data, it is found that Δpg scales with characteristic temperature T*.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephan Appelfeller

AbstractThe self-organized formation of single domain Au silicide nanowires is observed on Si(110). These nanowires are analysed using scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as photoemission spectroscopy (PES). Core-level PES is utilised to confirm the formation of Au silicide and establish its presence as the top most surface structure, i.e., the nanowires. The growth of the Au silicide nanowires and their dimensions are studied by STM. They form for Au coverages of about 1 monolayer and are characterized by widths of about 2 to 3 nm and heights below 1 nm while reaching lengths exceeding 500 nm when choosing appropriate annealing temperatures. Valence band PES and STS indicate a small but finite density of states at the Fermi level typical for compound metals.


1997 ◽  
Vol 08 (05) ◽  
pp. 1145-1158
Author(s):  
J. J. Rodríguez-Núñez ◽  
S. Schafroth

We implement the numerical method of summing Green function diagrams on the Matsubara frequency axis for the fluctuation exchange (FLEX) approximation. Our method has previously been applied to the attractive Hubbard model for low density. Here we apply our numerical algorithm to the Hubbard model close to half filling (ρ =0.40), and for T/t = 0.03, in order to study the dynamics of one- and two-particle Green functions. For the values of the chosen parameters we see the formation of three branches which we associate with the two-peak structure in the imaginary part of the self-energy. From the imaginary part of the self-energy we conclude that our system is a Fermi liquid (for the temperature investigated here), since Im Σ( k , ω) ≈ w2 around the chemical potential. We have compared our fully self-consistent FLEX solutions with a lower order approximation where the internal Green functions are approximated by free Green functions. These two approches, i.e., the fully self-consistent and the non-self-consistent ones give different results for the parameters considered here. However, they have similar global results for small densities.


1999 ◽  
Vol 13 (27) ◽  
pp. 3183-3192
Author(s):  
BUMSOO KYUNG

We study the half-filled two-dimensional Hubbard model in the intermediate coupling regime. As temperature is decreased for a two-dimensional half-filled band, two-dimensional critical fluctuations give rise to a strong local maximum in | Im Σ(k F , ω)| at ω=0, leading to a split peak with a pseudogap inside in the spectral function and the density of states. The calculated energy dispersion is in good agreement with that of spin density wave approximation.


Sign in / Sign up

Export Citation Format

Share Document