SIMULATION OF BIDISPERSE MAGNETORHEOLOGICAL FLUIDS

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2732-2738 ◽  
Author(s):  
DAVID KITTIPOOMWONG ◽  
DANIEL J. KLINGENBERG ◽  
JOHN C. ULICNY

A method for simulating the steady-shear behavior of bidisperse, nonlinearly magnetizable MR suspensions is described. Results show that the yield stress of suspensions containing mixtures of large and small particles is larger than that of monodisperse suspensions, in agreement with previous experimental results.

2018 ◽  
Vol 20 (30) ◽  
pp. 20247-20256 ◽  
Author(s):  
A. V. Anupama ◽  
V. B. Khopkar ◽  
V. Kumaran ◽  
B. Sahoo

The magneto-rheological behaviour of fluids containing soft-ferrimagnetic Fe3O4 micro-octahedrons (M = magnetization, τY = dynamic yield-stress and H = applied-magnetic-field).


1979 ◽  
Vol 101 (4) ◽  
pp. 311-320 ◽  
Author(s):  
S. K. Radhamohan ◽  
G. D. Galletly

The plastic collapse pressures of internally pressurized thin torispherical shells are given in the present paper. The influence of both the geometric parameters (i.e., r/D, RS/D and D/t) and the material properties (yield stress σyp and the strain-hardening coefficient) on the plastic collapse pressures were investigated. Both steel and aluminium shells were analyzed and, based on the present parametric study, approximate design equations for calculating the plastic collapse pressures are suggested. The asymmetric buckling pressures, pcr, for torispherical shells (obtained from a companion paper) are also compared with the plastic collapse pressures, pc, to determine which are the lower and, thus, control the mode of failure. In addition, the approximate design equations for pcr and pc are compared with some experimental results on small machined models; the agreement between theory and test was quite good.


2019 ◽  
Vol 76 ◽  
pp. 615-628 ◽  
Author(s):  
Irfan Bahiuddin ◽  
Saiful Amri Mazlan ◽  
Mohd. Ibrahim Shapiai ◽  
Fitrian Imaduddin ◽  
Ubaidillah ◽  
...  

2020 ◽  
Author(s):  
Hyeong-Jin Kim ◽  
Dae-Ho Yun ◽  
Yun-Tae Kim

<p>A debris flow, a mass movement of soil and water mixture, is generally occurred by heavy rainfall during the rainy season in Korea. Because of climate change, the amount and frequency of rainfall has continually increased these days. Populated areas located in debris flow-prone mountainous areas are commonly subject to debris flow hazards. For this reason, it is necessary to analyze the characteristics of the debris flow behavior for the hazard mitigation. In this study, for two samples from Hwangnyeong Mt. and Umyeon Mt. in Korea, the vane-type rheometer test were performed to estimate the rheological property such as viscosity and yield stress and small-scale flume experiment was carried out to evaluate the characteristics of debris flow behaviors such as front velocity, runout distance and deposition volume. From the experimental results, rheological properties decrease with decreasing volumetric sediment concentration, and debris flow behavior gradually increased with decreasing rheological properties in the experiment. Additionally, in case of Hwangnyeong Mt. which has a high silt and clay fraction, the experimental results show that the amount of the front velocity, runout distance and deposition volume tend to increase higher than Umyeon Mt. as viscosity and yield stress decreased.</p>


2005 ◽  
Vol 19 (01n03) ◽  
pp. 593-596 ◽  
Author(s):  
J. M. HE ◽  
J. HUANG

Magnetorheological (MR) fluids are materials that respond to an applied magnetic field with a change in their rheological properties. Upon application of a magnetic field, MR fluids have a variable yield strength. Altering the strength of the applied magnetic field will control the yield stress of these fluids. In this paper, the method for measuring the yield stress of MR fluids is proposed. The curves between the yield stress of the MR fluid and the applied magnetic field are obtained from the experiment. The result indicates that with the increase of the applied magnetic field the yield stress of the MR fluids goes up rapidly.


2010 ◽  
Vol 139-141 ◽  
pp. 194-197
Author(s):  
Bing Sheng Yan ◽  
Bin Wu ◽  
Cun Fu He ◽  
Jing Pin Jiao

This research develops a robust experimental procedure to monitor the evolution of early fatigue damage in AZ31 magnesium alloy with the acoustic nonlinearity parameter , and demons- trats its reliability by measuring the linear relationship between amplitudes of the second-harmonic waves and fundamental waves squared. Using this system, of two sets of specimens with different stress level is measured. The experimental results show that there is a significant increase in linked to fatigue degree in the early stages of fatigue life and reaches the maximum about 55%of fatigue life, when the stress level is ±60%of the yield stress, can characterize the early fatigue damage of magnesium alloy. However, when the stress level is ±70%of the yield stress, there is a regular fluctuation in linked to fatigue degree, this experimental results can’t be explained.


Sign in / Sign up

Export Citation Format

Share Document