CORRELATION OF CRITICAL TEMPERATURES AND ELECTRICAL PROPERTIES IN TITANIUM FILMS

2003 ◽  
Vol 17 (04n06) ◽  
pp. 948-952 ◽  
Author(s):  
C. GANDINI ◽  
V. LACQUANITI ◽  
E. MONTICONE ◽  
C. PORTESI ◽  
M. RAJTERI ◽  
...  

Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

2021 ◽  
Vol 92 (1) ◽  
pp. 013103
Author(s):  
Shinya Yamada ◽  
Yuto Ichinohe ◽  
Hideyuki Tatsuno ◽  
Ryota Hayakawa ◽  
Hirotaka Suda ◽  
...  

2000 ◽  
Author(s):  
Enectali Figueroa-Feliciano ◽  
Caroline K. Stahle ◽  
Fred M. Finkbeiner ◽  
Mary J. Li ◽  
Mark A. Lindeman ◽  
...  

2007 ◽  
Vol 22 (2) ◽  
pp. 138-141 ◽  
Author(s):  
Terrence Jach ◽  
Nicholas Ritchie ◽  
Joel Ullom ◽  
James A. Beall

We report on the use of a microcalorimeter X-ray detector with a transition edge sensor in an electron probe to perform quantitative analysis. We analyzed two bulk samples of multielement glasses that have been previously characterized by chemical methods for use as standard reference materials. The spectra were analyzed against standards using three different correction schemes. In one of the standards, the reference line was easily resolved despite its proximity within 45 eV of another line. With the exception of direct measurements of oxygen (a particularly challenging element), the results are in agreement with the certified characterization to better than 1% absolute or 8% relative. This demonstrates the potential of microcalorimeter detectors as replacements for conventional energy dispersive detectors in applications requiring high energy resolution.


2014 ◽  
Vol 617 ◽  
pp. 233-236
Author(s):  
Keiichi Tanaka ◽  
Masataka Ohgaki ◽  
Hidekazu Suzuki ◽  
Masakatsu Hasuda ◽  
Masato Yano ◽  
...  

Transition Edge Sensor (TES) is an energy dispersive X-ray detecting system with high energy resolution. The energy resolution of this system depends on the steepness of superconducting transition curve from normal to superconducting state, heat capacitance and the operating temperature. The TES is based on the dilution refrigerator cooled by about 100 mK. The energy resolution is calculated about 1-2 eV for the detector with maximum detecting energy as 10 eV. The energy resolution also depends on the superconducting current flowing through the TES device because the superconducting current is affected by the temperature stability of the refrigerator. The fluctuation of the superconducting current means the fluctuation of the X-ray spectrum peak center. We have developed the sensitivity correction system to stabilize the peak center of the X-ray spectrum. The peak center of X-ray spectrum correlates with heater power to keep the base temperature of TES device at a constant temperature. The peak center of X-ray spectrum is calibrated by monitoring the heater power at constant time interval using the correlation curve between the peak center of X-ray spectrum and heater power.


2017 ◽  
Vol 139 (49) ◽  
pp. 18024-18033 ◽  
Author(s):  
Rebeca G. Castillo ◽  
Rahul Banerjee ◽  
Caleb J. Allpress ◽  
Gregory T. Rohde ◽  
Eckhard Bill ◽  
...  

2015 ◽  
Vol 112 (52) ◽  
pp. 15803-15808 ◽  
Author(s):  
Ofer Hirsch ◽  
Kristina O. Kvashnina ◽  
Li Luo ◽  
Martin J. Süess ◽  
Pieter Glatzel ◽  
...  

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure–functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.


Author(s):  
Stephen J. Smith ◽  
Joseph S. Adams ◽  
Simon R. Bandler ◽  
James A. Chervenak ◽  
Aaron M. Datesman ◽  
...  

2020 ◽  
Author(s):  
Philipp Jäker ◽  
Dino Aegerter ◽  
Till Kyburz ◽  
Roman Staedler ◽  
Rea Fonjallaz ◽  
...  

Photo-electro-chemical (PEC) water splitting represents a promising technology towards an artificial photosynthetic device but many fundamental electronic processes, which govern long-term stability and energetics are not well understood. X-ray absorption spectroscopy (XAS), particularly its high energy resolution fluorescence-detected (HERFD) mode, emerges as a powerful tool to study photo-excited charge carrier behavior under operating conditions. The established thin film device architecture of PEC cells provides a well-defined measurement geometry, but it puts many constraints on conducting operando XAS experiments. So far, operando cells have not been developed that enable to concurrently measure highly intense X-ray fluorescence and photo-electro-chemical current without experimental artifacts caused by O<sub>2</sub> and H<sub>2</sub> bubbles formation. Moreover, we are missing a standardized thin film exchange procedure. Here, we address and overcome the instrumental limitations for operando HERFD-XAS to investigate photo- and electrochemical thin film devices. Our cell establishes a measurement routine that will provide experimental access to a broader scientific community, particularly due to the ease of sample exchange. Our operando photo-electro-chemical cell is optimized for the HERFD-XAS geometry and we demonstrate its operation by collecting high-resolution Fe K-edge spectra of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) and ferrite thin film (MFe<sub>2</sub>O<sub>4</sub>, M= Zn, Ni) photoelectrodes during water oxidation.<br>


Sign in / Sign up

Export Citation Format

Share Document