LATTICE-BOLTZMANN SIMULATIONS OF FLOW THROUGH NAFION POLYMER MEMBRANES

2003 ◽  
Vol 17 (01n02) ◽  
pp. 135-138 ◽  
Author(s):  
HIDEMITSU HAYASHI ◽  
SATORU YAMAMOTO ◽  
SHI-AKI HYODO

Simulations of flow through three-dimensional porous structures of NAFION polymer membranes are performed with a Lattice-Boltzmann method (LBM) for incompressible fluid. Geometry data of NAFION are constructed from a result of a dissipative particle dynamics simulation for three values of the water content, 10%, 20%, and 30%, and are used as the geometry input for the LBM. Permeability of the porous structure is extracted from results of the LBM simulation using Darcy's low. The permeability K is shown to be expressed as K = L2 × Ktpl with a characteristic length L and the dimensionless permeability Ktpl depending only on the topological structure of the porous media. Dependence of Ktpl is examined on the pressure gradient, the fluid viscosity, and the resolution of the computational grid.

2007 ◽  
Vol 129 (3) ◽  
pp. 603-610 ◽  
Author(s):  
Gunther Brenner ◽  
Ahmad Al-Zoubi ◽  
Merim Mukinovic ◽  
Hubert Schwarze ◽  
Stefan Swoboda

The effect of surface texture and roughness on shear and pressure forces in tribological applications in the lubrication regime is analyzed by means of lattice-Boltzmann simulations that take the geometry of real surface elements into account. Topographic data on representative surface structures are obtained with high spatial resolution with the application of an optical interference technique. The three-dimensional velocity field past these surfaces is computed for laminar flow of Newtonian fluids in the continuum regime. Subsequently, pressure and shear flow factors are obtained by evaluating the velocity field in accordance with the extended Reynolds equation of Patir and Cheng (1978, ASME J. Tribol., 100, pp. 12–17). The approach allows an efficient determination of the hydrodynamic characteristics of microstructured surfaces in lubrication. Especially, the influence of anisotropy of surface texture on the hydrodynamic load capacity and friction is determined. The numerical method used in the present work is verified for a simplified model configuration, the flow past a channel with sinusoidal walls. The results obtained indicate that full numerical simulations should be used to accurately and efficiently compute the characteristic properties of film flows past rough surfaces and may therefore contribute to a better understanding and prediction of tribological problems.


2005 ◽  
Vol 16 (01) ◽  
pp. 25-44 ◽  
Author(s):  
KANNAN N. PREMNATH ◽  
JOHN ABRAHAM

In this paper, three-dimensional computations of drop–drop interactions using the lattice Boltzmann method (LBM) are reported. The LBM multiphase flow model employed is evaluated for single drop problems and binary drop interactions. These include the verification of Laplace–Young relation for static drops, drop oscillations, and drop deformation and breakup in simple shear flow. The results are compared with experimental data, analytical solutions and numerical solutions based on other computational methods, as applicable. Satisfactory agreement is shown. Initial studies of drop–drop interactions involving the head-on collisions of drops in quiescent medium and off-center collision of drops in the presence of ambient shear flow are considered. As expected, coalescence outcome is observed for the range of parameters studied.


1999 ◽  
Vol 385 ◽  
pp. 41-62 ◽  
Author(s):  
DEWEI QI

A lattice-Boltzmann method has been developed to simulate suspensions of both spherical and non-spherical particles in finite-Reynolds-number flows. The results for sedimentation of a single elliptical particle are shown to be in excellent agreement with the results of Huang, Hu & Joseph (1998) who used a finite-element method. Sedimentation of two-dimensional circular and rectangular particles in a two-dimensional channel and three-dimensional spherical particles in a tube with square cross-section is simulated. Computational results are consistent with experimentally observed phenomena, such as drafting, kissing and tumbling.


Author(s):  
Long Sang ◽  
Yiping Hong ◽  
Fujun Wang

Droplet formation in a co-flowing microfluidic device is investigated with the lattice Boltzmann method (LBM). This LBM code was validated with two benchmarks such as Poiseuille flow through a straight duct and Taylor deformation on droplets between two shearing plates. A comparison of experimental droplet formation in a microchannel (Cramer et al, 2004) showed good quantitative agreement with our modeling results. With this code, a large number of simulations were carried out with various inlet flow rate ratios at various Re and various interfacial tensions in the co-flowing microfluidic system. All resulting droplet sizes are discussed quantitatively with the nondimensional parameters, which is helpful for droplet control in different co-flowing devices.


Author(s):  
Lei Jin ◽  
Yawu Zeng ◽  
Jingjing Li ◽  
Hanqing Sun

Based on the discrete element method and the proposed virtual slicing technique for three-dimensional discrete element model, random pore-structural models of soil-rock mixtures are constructed and voxelized. Then, the three-dimensional lattice Boltzmann method is introduced to simulate the seepage flow in soil-rock mixtures on the pore scale. Finally, the influences of rock content, rock size, rock shape and rock orientation on the simulated permeability of soil-rock mixtures are comprehensively investigated. The results show that the permeability of soil-rock mixtures remarkably decreases with the increase of rock content. When the other conditions remain unchanged, the permeability of soil-rock mixtures increases with the increase of rock size. The permeability of soil-rock mixtures with bar-shaped rocks is smaller than that of soil-rock mixtures with block-shaped rocks, but larger than that of soil-rock mixtures with slab-shaped rocks. The rock orientation has a certain influence on the permeability of SRMs, and the amount of variation changes with the rock shape: when the rocks are bar-shaped, the permeability is slightly decreased as the major axes of these rocks change from parallel to perpendicular with respect to the direction of main flow; when the rocks are slab-shaped, the permeability decreases more significantly as the slab planes of these rocks change from parallel to perpendicular with respect to the direction of main flow.


2004 ◽  
Vol 15 (08) ◽  
pp. 1049-1060 ◽  
Author(s):  
GUSZTÁV MAYER ◽  
GÁBOR HÁZI ◽  
JÓZSEF PÁLES ◽  
ATTILA R. IMRE ◽  
BJÖRN FISCHER ◽  
...  

In lattice Boltzmann simulations particle groups — represented by scalar velocity distributions — are moved on a finite lattice. The size of these particle groups is not well-defined although it is crucial to assume that they should be big enough for using a continuous distribution. Here we propose to use the liquid–vapor interface as an internal yardstick to scale the system. Comparison with existing experimental data and with molecular dynamics simulation of Lennard–Jones-argon shows that the number of atoms located on one lattice site is in the order of few atoms. This contradicts the initial assumption concerning the number of particles in the group, therefore seems to raise some doubts about the applicability of the lattice Boltzmann method in certain problems whenever interfaces play important role and ergodicity does not hold.


Sign in / Sign up

Export Citation Format

Share Document