PRELIMINARY COMMISSIONING OF SUPERCONDUCTING MAGNETS AND CRYOGENIC SYSTEM OF BEPC II

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3163-3165
Author(s):  
Z. G. ZONG ◽  
L. Q. LIU ◽  
Q. J. XU ◽  
L. Y. XIONG ◽  
L. ZHANG ◽  
...  

A helium cryogenic system with cooling capacity of 1 kW at 4.5 K was set up at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing. This helium refrigerating system is dedicated for the cooling of two superconducting radio frequency (SRF) cavities, two interaction region superconducting collision quadrupole (SCQ) magnets, a detector superconducting solenoid magnet (SSM), which are the key items of the upgrade project of Beijing Electron-Positron Collider (BEPC II). Commissioning with the detector and SCQ magnets was carried out, which will be introduced in this paper. The cryogenic system shows very robust as SSM quench. This paper presents the overall status and some test results of superconducting and cryogenic system.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gang Li ◽  
Rui Ye ◽  
Mingjing Sang ◽  
Shaopeng Li ◽  
Zhuo Zhang ◽  
...  

AbstractThe BEPCII project is for upgrading the Beijing Electron Positron Collider to reach a higher luminosity. The cryogenic system has been firstly designed and deployed in BEPCII, which provides cooling capacity for SRF cavities, SCQ and SSM. The cryogenic control system consists of Siemens PLC for the refrigerator control and “PLC + IOC” for superconducting device control. The BEPCII machine commissioning with beam started in October 2006. This paper describes the design and the development of the cryogenic control system.


2020 ◽  
Vol 245 ◽  
pp. 05028
Author(s):  
Xianghu Zhao ◽  
Manqi Ruan ◽  
Gang Li ◽  
Xiaomei Zhang

The Circular Electron Positron Collider (CEPC) is designed as a future Higgs Factory. Like most high energy physics experiments, the offline software consists of many packages. BSM (Bundled Software Manager) is thus created in order to simplify the deployment and usage of software which has many packages and dependencies. BSM utilizes Git as the software release repository. The details of software are defined in the Git repository including installation instructions, environment, dependencies, etc. Commands are supported for various shells. Json output and python API are also available for advanced development. The installation of each package could be configured separately and extended with customized handlers. BSM manages the environment variables and the version switching is easy. It also has fine environment control on a single package. Users can also define their own packages easily and these packages will be managed by BSM with simple configuration. CEPC software has already set up the deployment procedure with BSM. And BSM is also designed with flexibility to create different applications other than CEPC software. It is suitable for the projects including a lot of packages and it is safe for different BSM applications to coexist with each other under proper configuration.


2021 ◽  
Author(s):  
Renqiang 张仁强 Zhang ◽  
Ying Chen ◽  
Wei Sun ◽  
Zhaofeng Liu ◽  
Ming Gong ◽  
...  

Abstract In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark annihilation effect almost does not change the $J/\psi$ mass, but lifts the $\eta_c$ mass by approximately 3-4 MeV. For $1P$ charmonia, this effect results in positive mass shifts of approximately 1 MeV for $\chi_{c1}$ and $h_c$, but decreases the $\chi_{c2}$ mass by approximately 3 MeV. We have not obtain a reliable result for the mass shift of $\chi_{c0}$. In addition, it is observed that the spin averaged mass of the spin-triplet $1P$ charmonia is in a good agreement with the $h_c$, as expected by the non-relativistic quark model and measured by experiments. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


Nature ◽  
1967 ◽  
Vol 216 (5119) ◽  
pp. 964-969 ◽  
Author(s):  
P. F. SMITH ◽  
D. B. THOMAS

2019 ◽  
Vol 214 ◽  
pp. 06037
Author(s):  
Moritz Kiehn ◽  
Sabrina Amrouche ◽  
Paolo Calafiura ◽  
Victor Estrade ◽  
Steven Farrell ◽  
...  

The High-Luminosity LHC (HL-LHC) is expected to reach unprecedented collision intensities, which in turn will greatly increase the complexity of tracking within the event reconstruction. To reach out to computer science specialists, a tracking machine learning challenge (TrackML) was set up on Kaggle by a team of ATLAS, CMS, and LHCb physicists tracking experts and computer scientists building on the experience of the successful Higgs Machine Learning challenge in 2014. A training dataset based on a simulation of a generic HL-LHC experiment tracker has been created, listing for each event the measured 3D points, and the list of 3D points associated to a true track.The participants to the challenge should find the tracks in the test dataset, which means building the list of 3D points belonging to each track.The emphasis is to expose innovative approaches, rather than hyper-optimising known approaches. A metric reflecting the accuracy of a model at finding the proper associations that matter most to physics analysis will allow to select good candidates to augment or replace existing algorithms.


2013 ◽  
Vol 02 (02) ◽  
pp. 19-21
Author(s):  
Zhentang Zhao

The fourth International Particle Accelerator Conference, IPAC'13, took place at the Shanghai International Conference Center, Shanghai, China from Sunday to Friday, 12 to 17 May, 2013. It was attended by close to 1000 full time delegates from approximately 30 different countries on all continents. Hosted by the Shanghai Institute of Applied Physics (SINAP) and the Institute of High Energy Physics (IHEP), Beijing, it was supported by the Asian Committee for Future Accelerators (ACFA), the American Physical Society Division of Physics of Beams (APS-DPB), the European Physical Society Accelerator Group (EPS-AG), the International Union of Pure and Applied Physics (IUPAP), the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (NSFC). Furthermore, the attendance of over 85 young scientists from all over the world was made possible through the sponsorship of societies, institutes and laboratories worldwide (in alphabetical order): ACFA, APS-DPB, CAS, EPSAG with contributions from ALBA-CELLS, Centro Fermi, CERN, CNRS-IN2P3, DESY, Diamond Light Source, ESRF, GSI, HZB, HZDR, IFIC, JAI, Max Lab, PSI, Synchrotron Soleil and STFC/Cockcroft Institute, and IUPAP. The organizers of IPAC'13 are grateful to all sponsors for their valuable support.


2022 ◽  
Author(s):  
Zuoheng Zou ◽  
Yu Meng ◽  
Chuan 刘川 Liu

Abstract We perform a lattice QCD calculation of the $\chi_{c0} \rightarrow 2\gamma$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtained to be $\Gamma_{\gamma\gamma}(\chi_{c0})=3.65(83)_{\mathrm{stat}}(21)_{\mathrm{lat.syst}}(66)_{\mathrm{syst}}\, \textrm{keV}$. Albeit this large statistical error, our result is compatible with the experimental results within 1.3$\sigma$. Potential improvements of the lattice calculation in the future are also discussed. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2018 ◽  
Vol 14 ◽  
pp. 21
Author(s):  
Tomas Matlocha ◽  
Filip Krizek

The U-120M cyclotron at the Nuclear Physics Institute (NPI) of the Czech Academy of Sciences in Rez is used for radiation hardness tests of electronics for high-energy physics experiments. These tests are usually carried out with proton fluxes of the order of 10<sup>5</sup>–10<sup>9</sup> proton·cm<sup>−2</sup>·s<sup>−1</sup>. Some tests done for the upgrade of the Inner Tracking System of the ALICE experiment at CERN, however, required proton beam intensities several orders of magnitude lower. This paper presents a method which has been developed to achieve the proton beam flux of the order of 1 proton · cm<sup>−2</sup>·s<sup>−1</sup>. The method is mainly based on reduction of the discharge current in the cyclotron internal Penning type ion source. Influence of this new operation mode on the lifetime of ion source cathodes is discussed.


2021 ◽  
Author(s):  
Yong-Jiang XU ◽  
Yong-Lu Liu ◽  
Ming-Qiu Huang

Abstract In this paper, we consider all P-wave $\Omega_{b}$ states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues with the method of QCD sum rule. Due to the large uncertainties in our calculation compared with the small difference in the masses of the excited $\Omega_{b}$ states observed by the LHCb collaboration, it is necessary to study other properties of the P-wave $\Omega_{b}$ states represented by the interpolating currents investigated in the present work in order to have a better understanding about the four excited $\Omega_{b}$ states observed by the LHCb collaboration. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


Sign in / Sign up

Export Citation Format

Share Document