scholarly journals P-wave $\Omega_{b}$ states: masses and pole residues

2021 ◽  
Author(s):  
Yong-Jiang XU ◽  
Yong-Lu Liu ◽  
Ming-Qiu Huang

Abstract In this paper, we consider all P-wave $\Omega_{b}$ states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues with the method of QCD sum rule. Due to the large uncertainties in our calculation compared with the small difference in the masses of the excited $\Omega_{b}$ states observed by the LHCb collaboration, it is necessary to study other properties of the P-wave $\Omega_{b}$ states represented by the interpolating currents investigated in the present work in order to have a better understanding about the four excited $\Omega_{b}$ states observed by the LHCb collaboration. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.

2021 ◽  
Author(s):  
Renqiang 张仁强 Zhang ◽  
Ying Chen ◽  
Wei Sun ◽  
Zhaofeng Liu ◽  
Ming Gong ◽  
...  

Abstract In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark annihilation effect almost does not change the $J/\psi$ mass, but lifts the $\eta_c$ mass by approximately 3-4 MeV. For $1P$ charmonia, this effect results in positive mass shifts of approximately 1 MeV for $\chi_{c1}$ and $h_c$, but decreases the $\chi_{c2}$ mass by approximately 3 MeV. We have not obtain a reliable result for the mass shift of $\chi_{c0}$. In addition, it is observed that the spin averaged mass of the spin-triplet $1P$ charmonia is in a good agreement with the $h_c$, as expected by the non-relativistic quark model and measured by experiments. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2013 ◽  
Vol 02 (02) ◽  
pp. 19-21
Author(s):  
Zhentang Zhao

The fourth International Particle Accelerator Conference, IPAC'13, took place at the Shanghai International Conference Center, Shanghai, China from Sunday to Friday, 12 to 17 May, 2013. It was attended by close to 1000 full time delegates from approximately 30 different countries on all continents. Hosted by the Shanghai Institute of Applied Physics (SINAP) and the Institute of High Energy Physics (IHEP), Beijing, it was supported by the Asian Committee for Future Accelerators (ACFA), the American Physical Society Division of Physics of Beams (APS-DPB), the European Physical Society Accelerator Group (EPS-AG), the International Union of Pure and Applied Physics (IUPAP), the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (NSFC). Furthermore, the attendance of over 85 young scientists from all over the world was made possible through the sponsorship of societies, institutes and laboratories worldwide (in alphabetical order): ACFA, APS-DPB, CAS, EPSAG with contributions from ALBA-CELLS, Centro Fermi, CERN, CNRS-IN2P3, DESY, Diamond Light Source, ESRF, GSI, HZB, HZDR, IFIC, JAI, Max Lab, PSI, Synchrotron Soleil and STFC/Cockcroft Institute, and IUPAP. The organizers of IPAC'13 are grateful to all sponsors for their valuable support.


2022 ◽  
Author(s):  
Zuoheng Zou ◽  
Yu Meng ◽  
Chuan 刘川 Liu

Abstract We perform a lattice QCD calculation of the $\chi_{c0} \rightarrow 2\gamma$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtained to be $\Gamma_{\gamma\gamma}(\chi_{c0})=3.65(83)_{\mathrm{stat}}(21)_{\mathrm{lat.syst}}(66)_{\mathrm{syst}}\, \textrm{keV}$. Albeit this large statistical error, our result is compatible with the experimental results within 1.3$\sigma$. Potential improvements of the lattice calculation in the future are also discussed. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2017 ◽  
Vol 4 (6) ◽  
pp. 934-942

Abstract The Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), is China's biggest laboratory for basic sciences. IHEP aims to understand the universe at the most fundamental level—from the smallest subatomic particles to the large-scale structure of the cosmos. As well as theoretical and experimental research into particle and astroparticle physics, IHEP has a broad range of research in related fields from accelerator technologies to nuclear analysis techniques. The Institute also provides beam facilities for researchers in other fields of sciences.


2022 ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada

Abstract We discuss a linear seesaw model with as minimum field content as possible, introducing a modular $S_4$ with the help of gauged $U(1)_{B-L}$ symmetries. Due to rank two neutrino mass matrix, we have a vanishing neutrino mass eigenvalue, and only the normal mass hierarchy of neutrinos is favored through the modular $S_4$ symmetry.In our numerical $\Delta \chi^2$ analysis, we especially find rather sharp prediction on sum of neutrino masses to be around $60$ meV in addition to the other predictions. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2017 ◽  
Vol 4 (2) ◽  
pp. 264-268
Author(s):  
Jane Qiu ◽  

Abstract While China's almost flawless space endeavours—such as its space lab Tiangong-2, launched last year, and the 2012 mission that sent a rover to the surface of the Moon—have long impressed the world, space-science missions were not among its priorities until recently. The situation improved in 2011 when the Chinese Academy of Sciences won government support for a 10-year Strategic Pioneering Programme on Space Science—with a total budget of nearly 1 billion dollars. Since then, China has launched satellites to probe dark matter, detect black holes and conduct quantum experiments from space. This year will see the launch of an astronomy satellite and a highly anticipated mission to bring back rocks from the Moon. In a forum chaired by National Science Review's Executive Associate Editor Mu-ming Poo, space scientists discussed different types of Chinese space programmes, the science missions already launched or in development, the importance and challenges of international collaboration, and the uncertain future of the country's space-science development. Chunlai Li Deputy Director, National Astronomical Observatories, Chinese Academy of Sciences, Beijing Ji Wu Director, National Centre of Space Science, Chinese Academy of Sciences, Beijing Jianyu Wang Deputy Director, Chinese Academy of Sciences Shanghai Branch Shuangnan Zhang Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing Yifang Wang Director, Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing Mu-ming Poo (Chair) Director, Institute of Neuroscience, Institute of High-Energy Physics, Chinese Academy of Sciences, Shanghai


The search for elementary particles is as old as science itself. It is always the most advanced part of physics which strives for an understanding of the fundamental constituents of matter. As physics progressed, the search for elementary particles moved on from chemistry to atomic physics, and then to nuclear physics. Not much more than a decade ago it separated from nuclear physics and became a new field, dealing no longer with the structure of atomic nuclei but with the structure of the constituents of nuclei, the protons and neutrons, and also with the structure of electrons and similar particles. This field is often referred to as high-energy physics because in it beams of particles of extremely high energy are needed for most of the relevant experiments. The purpose of this article is to present a bird’s-eye view of the new aspects which elementary particle research has recently created and to show how they fit into the framework of physics of this century.


2016 ◽  
Vol 3 (1) ◽  
pp. 148-152 ◽  
Author(s):  
Jane Qiu

Abstract China has invested heavily in nanotechnology in the past decades. It's one of the key areas of focus in the medium and long-term scientific programmes between 2006 and 2020. In 2012, the country also launched a Strategic Pioneering Programme on nanotechnology, which has a budget of one billion yuan (US$152 million) over five years and is led by the Chinese Academy of Sciences (CAS) in Beijing. As a result of this long-term investment, China is now a major player in nanotechnology, ranking first worldwide in terms of the number of scientific papers and patents. At the Sixth International Conference on Nanoscience and Technology—which was held in Beijing on 3–5 September, 2015—Chunli Bai, President of CAS and Editor-in-Chief of National Science Review (NSR), shared a platform with another five leading scientists, where they discussed recent progress of nanotechnology in China, the potential impact of nanoparticles on public health, as well as challenges and opportunities ahead. Chunli Bai (Chair) President of Chinese Academy of Sciences in Beijing Minghua Liu An expert on nano materials and molecular assembly and Director of National Center for Nanoscience and Technology, China, in Beijing Zhongfan Liu An expert on nanochemistry and graphene at Peking University Chen Wang An expert on nanomicroscopy and nanomedicine and Deputy Director of National Center for Nanoscience and Technology, China, in Beijing Peidong Yang An expert on nanomaterials and their application in energy research at the University of California at Berkeley, USA Yuliang Zhao An expert on nanomedicine and nanosafety at National Center for Nanoscience and Technology, China, and Chinese Academy of Sciences’ Institute of High Energy Physics


1997 ◽  
Vol 25 (2-3) ◽  
pp. 88-97 ◽  
Author(s):  
Beverly Woodward

All scientific activity involves some method of observation and some method of recording what is observed. These activities can be carried out in ways that involve little interaction between subject and object, as is the case when a telescope observes a far-away star. At the other end of the scale are experiments in modern high energy physics in which there is little distinction between the observer and the observed, and the process of observation materially affects the data that are recorded. In this regard, research on human phenomena resembles modern physics more than it does classical astronomy.Research on human phenomena, however, differs from modern physics in the way in which it affects that which is observed. Both the procedures and the findings of research on human phenomena alter the modes of thinking and the self-awareness of the (human) objects of study.


2021 ◽  
Author(s):  
Nilanjana Kumar ◽  
Takaaki Nomura ◽  
Hiroshi Okada

Abstract We consider a model with multi-charged particles including vector-like fermions and a charged scalar under a local $U(1)_{\mu - \tau}$ symmetry. We search for allowed parameter region explaining muon anomalous magnetic moment (muon $g-2$) and $b \to s \ell^+ \ell^-$ anomalies, satisfying constraints from the lepton flavor violations, $Z$ boson decays, meson anti-meson mixing and collider experiments. Carrying out numerical analysis, we explore the typical size of the muon $g-2$ and Wilson coefficients to explain $b \to s \ell^+ \ell^-$ anomalies in our model when all other experimental constraints are satisfied. We then discuss the collider physics of the multicharged vectorlike fermions, considering some benchmark points in the allowed parameter space. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


Sign in / Sign up

Export Citation Format

Share Document