INFLUENCE OF BOTH ELECTRIC AND MAGNETIC FIELDS ON THE BOUND POLARON IN AN ANISOTROPIC QUANTUM DOT

2008 ◽  
Vol 22 (16) ◽  
pp. 2611-2616 ◽  
Author(s):  
SHI-HUA CHEN ◽  
JING-LIN XIAO

The binding energy of a bound polaron in an anisotropic quantum dot (QD) subject to electric and magnetic fields along the growth axis has been investigated by using a variational method of Pekar type, taking into account the electron-bulk LO-phonon interaction. The results show that the binding energy decreases with increasing electric field strength and increases with increasing confinement strengths in the lateral and the longitudinal direction, the magnetic field strength, and the Coulomb potential.

2012 ◽  
Vol 15 ◽  
pp. 184-190
Author(s):  
ABBAS SHAHBANDARI

The effect of phonon confinement on ground state binding energy of bound polaron in polar quantum wires with a finite confining potential investigated by Landau-Pekar variation technique. The effect of external electric and magnetic fields is taken into account as well. The obtained results show that the polar optical phonon confinement leads to a considerable enhancement of the polaron effect and these corrections increase with increasing of applied fields.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950386
Author(s):  
Shi-Hua Chen

The first-excited-state (ES) binding energy of hydrogenic impurity bound polaron in an anisotropic quantum dot (QD) is obtained by constructing a variational wavefunction under the action of a uniform external electric field. As for a comparison, the ground-state (GS) binding energy of the system is also included. We apply numerical calculations to KBr QD with stronger electron–phonon (E–P) interaction in which the new variational wavefunction is adopted. We analyzed specifically the effects of electric field and the effects of both the position of the impurity and confinement lengths in the xy-plane and the [Formula: see text] direction on the ground and the first-ES binding energies (BEs). The results show that the selected trial wavefunction in the ES is appropriate and effective for the current research system.


2004 ◽  
Vol 18 (20n21) ◽  
pp. 2887-2899 ◽  
Author(s):  
RUI-QIANG WANG ◽  
HONG-JING XIE ◽  
YOU-BIN YU

The polaronic correction to the ground-state energy of the electron confined in a cylindrical quantum dot (QD) subject to electric and magnetic fields along the growth axis has been investigated. Using a combinative approach of perturbative theory and variational wavefunction, calculations are performed for an infinitely deep confinement potential outside the QD within the effective mass and adiabatic approximation. We have treated the system by taking into consideration the interaction of the electron with the confined longitudinal optical (LO) phonons as well as the side surface (SSO) and the top surface (TSO) optical phonons.1,2 The ground-state energy shift is obtained as a function of the cylindrical radius and the strength of electric and magnetic fields. The results show that the magnetic field heavily enhances the three types of phonon mode contribution to the correction of the electron ground-state energy while the electric field only improves the contribution of surface phonons (SSO and TSO) but decreases the contribution of LO phonons.


Sign in / Sign up

Export Citation Format

Share Document