scholarly journals Synchronization for a Class of Fractional-Order Hyperchaotic System and Its Application

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wen Tan ◽  
Feng Ling Jiang ◽  
Chuang Xia Huang ◽  
Lan Zhou

A new controller design method is proposed to synchronize the fractional-order hyperchaotic system through the stability theory of fractional calculus; the synchronization between two identical fractional-order Chen hyperchaotic systems is realized by designing only two suitable controllers in the response system. Furthermore, this control scheme can be used in secure communication via the technology of chaotic masking using the complex nonperiodic information as trial message, and the useful information can be recovered at the receiver. Numerical simulations coincide with the theoretical analysis.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Seng-Kin Lao ◽  
Lap-Mou Tam ◽  
Hsien-Keng Chen ◽  
Long-Jye Sheu

A hybrid stability checking method is proposed to verify the establishment of synchronization between two hyperchaotic systems. During the design stage of a synchronization scheme for chaotic fractional-order systems, a problem is sometimes encountered. In order to ensure the stability of the error signal between two fractional-order systems, the arguments of all eigenvalues of the Jacobian matrix of the erroneous system should be within a region defined in Matignon’s theorem. Sometimes, the arguments depend on the state variables of the driving system, which makes it difficult to prove the stability. We propose a new and efficient hybrid method to verify the stability in this situation. The passivity-based control scheme for synchronization of two hyperchaotic fractional-order Chen-Lee systems is provided as an example. Theoretical analysis of the proposed method is validated by numerical simulation in time domain and examined in frequency domain via electronic circuits.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Darui Zhu ◽  
Chongxin Liu ◽  
Bingnan Yan

A novel fractional-order hyperchaotic system is proposed; the theoretical analysis and numerical simulation of this system are studied. Based on the stability theory of fractional calculus, we propose a novel drive-response synchronization scheme. In order to achieve this synchronization control, the Adams-Bashforth-Moulton algorithm is studied. And then, a drive-response synchronization controller is designed to realize the synchronization of the drive and response system, and the simulation results are given. At last, the fractional oscillator circuit of the new fractional-order hyperchaotic system is designed based on the EWB software, and it is verified that the simulation results of the fractional-order oscillator circuit are consistent with the numerical simulation results through circuit simulation.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Author(s):  
Jialong Zhang ◽  
Jianguo Yan ◽  
Pu Zhang ◽  
Xiaoqiao Qi ◽  
Maolong Lü

Aiming at the high-speed flight of the UAVs cooperative formation, when a single UAV has occurred, need to exit the formation flight and be close or super close to form of the formation quickly. A fast close cooperative formation controller design method is proposed to make up for low the fighting robustness, and be shortcomings of timeliness poorly and analyze the dynamic characteristic of UAV formation flight. Taking the external factors known into consideration, setting up for the longitude maneuver of nonlinear thrust vector and unsteady aerodynamic model, according to the formation velocity, flat tail rudder angle and thrust vector and pitch angle velocity for corresponding input commend signals for the controller to research the dynamic characteristic of UAV formation flight. Meanwhile, the formation flight distance error is the convergence to a fixed value, and the stability of the cooperative formation flight is good. The simulation of results show that the controller can effectively improve the speed of the close or super close to formation, and maintain the stability of the formation flight, which provides a method of the close or super close formation flight controller design.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2266 ◽  
Author(s):  
Fei Zhao ◽  
Jinsha Yuan ◽  
Ning Wang ◽  
Zhang Zhang ◽  
Helong Wen

The problem of secure load frequency control of smart grids is investigated in this paper. The networked data transmission within the smart grid is corrupted by stochastic deception attacks. First, a unified Load frequency control model is constructed to account for both network-induced effects and deception attacks. Second, with the Lyapunov functional method, a piecewise delay analysis is conducted to study the stability of the established model, which is of less conservativeness. Third, based on the stability analysis, a controller design method is provided in terms of linear matrix inequalities. Finally, a case study is carried out to demonstrate the derived results.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 1017-1028
Author(s):  
Tufan Dogruer ◽  
Nusret Tan

This paper presents a controller design method using lead and lag controllers for fractional-order control systems. In the presented method, it is aimed to minimize the error in the control system and to obtain controller parameters parametrically. The error occurring in the system can be minimized by integral performance criteria. The lead and lag controllers have three parameters that need to be calculated. These parameters can be determined by the simulation model created in the Matlab environment. In this study, the fractional-order system in the model was performed using Matsuda’s fourth-order integer approximation. In the optimization model, the error is minimized by using the integral performance criteria, and the controller parameters are obtained for the minimum error values. The results show that the presented method gives good step responses for lead and lag controllers.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abir Lassoued ◽  
Olfa Boubaker

A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.


Sign in / Sign up

Export Citation Format

Share Document