Electronic and optical properties of AlN under pressure: DFT calculations

2017 ◽  
Vol 31 (02) ◽  
pp. 1650255
Author(s):  
Sahar Javaheri ◽  
Arash Boochani ◽  
Manuchehr Babaeipour ◽  
Sirvan Naderi

Structural, elastic, optical, and electronic properties of wurtzite (WZ), zinc-blende (ZB), and rocksalt (RS) structures of AlN are investigated using the first-principles method and within the framework of density functional theory (DFT). Lattice parameters, bulk modulus, shear modulus, Young’s modulus, and elastic constants are calculated at zero pressure and compared with other experimental and theoretical results. The wurtzite and zinc-blende structures have a transition to rocksalt phase at the pressures of 12.7 GPa and 14 GPa, respectively. The electronic properties are calculated using both GGA and EV-GGA approximations; the obtained results by EV-GGA approximation are in much better agreement with the available experimental data. The RS phase has the largest bandgap with an amount of 4.98 eV; by increasing pressure, this amount is also increased. The optical properties like dielectric function, energy loss function, refractive index, and extinction coefficient are calculated under pressure using GGA approximation. Inter-band transitions are investigated using the peaks of imaginary part of the dielectric function and these transitions mainly occur from N-2[Formula: see text] to Al-3[Formula: see text] levels. The results show that the RS structure has more different properties than the WZ and ZB structures.

2010 ◽  
Vol 29-32 ◽  
pp. 1803-1808 ◽  
Author(s):  
Chun Li ◽  
Fan Yang ◽  
Wan Lin Guo

Strain-dependent electro-optic constant r33 and nonlinear optical coefficient d33 of ZnO are investigated systematically using density-functional theory based linear-response perturbation method. Miscellaneous properties, such as dielectric constants, elastic constants, piezoelectric coefficients, nonlinear optical coefficients, and electro-optic constants of other II-VI compound semiconductors (both Wurtzite and Zinc-blende structures) are also calculated for comparison with the results of unstrained ZnO. Extensive first-principles calculations show that both r33 and d33 of ZnO decrease almost linearly with increasing strains, which indicates that appropriate compression along the [0001] direction of ZnO could enhance its electro-optic and nonlinear optical properties, while stretching may weaken the corresponding properties. Among the involved Wurtzite structures, ZnO has the highest elastic constant, piezoelectric coefficient and electro-optic constant, showing practical importance.


2016 ◽  
Vol 27 (03) ◽  
pp. 1650035 ◽  
Author(s):  
Rezek Mohammad ◽  
Şenay Katırcıoğlu

Structural stability and electronic properties of GaAs[Formula: see text]P[Formula: see text] ([Formula: see text]) nanowires (NWs) in zinc-blende (ZB) ([Formula: see text] diameter [Formula: see text][Formula: see text]Å) and wurtzite (WZ) ([Formula: see text][Formula: see text]Å) phases are investigated by first-principles calculations based on density functional theory (DFT). GaAs ([Formula: see text]) and GaP ([Formula: see text]) compound NWs in WZ phase are found energetically more stable than in ZB structural ones. In the case of GaAs[Formula: see text]P[Formula: see text] alloy NWs, the energetically favorable phase is found size and composition dependent. All the presented NWs have semiconductor characteristics. The quantum size effect is clearly demonstrated for all GaAs[Formula: see text]P[Formula: see text] ([Formula: see text]) NWs. The band gaps of ZB and WZ structural GaAs compound NWs with [Formula: see text] diameter [Formula: see text][Formula: see text]Å and [Formula: see text][Formula: see text]Å, respectively are enlarged by the addition of concentrations of phosphorus for obtaining GaAs[Formula: see text]P[Formula: see text] NWs proportional to the x values around 0.25, 0.50 and 0.75.


2009 ◽  
Vol 87 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Hong-Ling Cui ◽  
Fen Luo ◽  
Xiang-Rong Chen ◽  
Guang-Fu Ji

A first-principles plane-wave method with the ultrasoft pseudopotential scheme in the framework of density functional theory is performed to calculate the lattice parameters, the bulk modulus B0 and its pressure derivative B0' of the zinc-blende GaAs (ZB–GaAs), rocksalt GaAs (RS–GaAs), CsCl–GaAs, NiAs–GaAs, and wurtzite GaAs (WZ–GaAs). We also calculate the phase transition pressures between different phases, Debye temperatures, and the anisotropies. Our results are consistent with other theoretical results.


2012 ◽  
Vol 571 ◽  
pp. 292-295
Author(s):  
Ben Hai Yu ◽  
Chao Xu ◽  
Dong Chen

We report ab initio calculations of the structural, elastic and optical properties of the compound LaB6 as a function of pressure. The computation is based on the density functional theory in combination with the generalized gradient approximation functional. The calculated lattice constants and elastic moduli are compared with the theoretical results and a good agreement is found. LaB6 can retain its mechanical stability in the pressure range of 0-20GPa. Besides, the frequency-dependent dielectric function, absorption coefficient and loss function of LaB6 are also obtained. The calculated static dielectric function is 8.8 at 0GPa and 5GPa. The computed results should be testified by experiments.


2021 ◽  
Vol 11 (2) ◽  
pp. 551
Author(s):  
Petros-Panagis Filippatos ◽  
Nikolaos Kelaidis ◽  
Maria Vasilopoulou ◽  
Dimitris Davazoglou ◽  
Alexander Chroneos

In the present study, we performed density functional theory calculations (DFT) to investigate structural changes and their impact on the electronic properties in halogen (F, Cl, Br, and I) doped tin oxide (SnO2). We performed calculations for atoms intercalated either at interstitial or substitutional positions and then calculated the electronic structure and the optical properties of the doped SnO2. In all cases, a reduction in the bandgap value was evident, while gap states were also formed. Furthermore, when we insert these dopants in interstitial and substitutional positions, they all constitute a single acceptor and donor, respectively. This can also be seen in the density of states through the formation of gap states just above the valence band or below the conduction band, respectively. These gap states may contribute to significant changes in the optical and electronic properties of SnO2, thus affecting the metal oxide’s suitability for photovoltaics and photocatalytic devices. In particular, we found that iodine (I) doping of SnO2 induces a high dielectric constant while also reducing the oxide’s bandgap, making it more efficient for light-harvesting applications.


Author(s):  
Wei-Feng Xie ◽  
Hao-Ran Zhu ◽  
Shi-Hao Wei

The structural evolutions and electronic properties of Au$_l$Pt$_m$ ($l$+$m$$\leqslant$10) clusters are investigated by using the first$-$principles methods based on density functional theory (DFT). We use Inverse design of materials by...


2011 ◽  
Vol 311-313 ◽  
pp. 526-529
Author(s):  
Cai Juan Xia ◽  
Han Chen Liu ◽  
Ji Xin Yin

Using non-equilibrium Green’s function formalism combined with first-principles density functional theory, we investigate the electronic transport properties of a triangle terarylene(open- and closed-ring forms) optical molecular switch. The influence of the HOMO-LUMO gaps and the spatial distributions of molecular orbitals on the quantum transport through the molecular device is discussed. Theoretical results show that the conductance of the closed-ring is 3-8 times larger than that of open-ring, which expect that this system can be one of good candidates for optical switches due to this unique advantage, and may have some potential applications in future molecular circuit.


2014 ◽  
Vol 16 (27) ◽  
pp. 14096-14107 ◽  
Author(s):  
Bhaskar Chilukuri ◽  
Ursula Mazur ◽  
K. W. Hipps

Implication of dispersion interactions on geometric, adsorption and electronic properties of porphyrin monolayer on conductive surfaces using density functional theory.


Author(s):  
Javaria Batool ◽  
Syed Muhammad Alay-e-Abbas ◽  
Gustav Johansson ◽  
Waqas Zulfiqar ◽  
Muhammad Arsam Danish ◽  
...  

The thermodynamic, structural, magnetic and electronic properties of pristine and intrinsic vacancy defect containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of...


2015 ◽  
Vol 29 (20) ◽  
pp. 1550103
Author(s):  
Jinhui Zhai ◽  
Jinguang Zhai ◽  
Ajun Wan

The electronic and optical properties of zinc-blende (zb)[Formula: see text]GeC have been investigated using first principles calculations based on the density functional theory (DFT). The obtained band gap of zb–GeC is 2.30[Formula: see text]eV by means of Heyd–Scuseria–Ernzerhof (HSE) functional. We have discussed the energy-dependent optical functions including dielectric constants, refractive index, absorption, reflectivity, and energy-loss spectrum in detail. The results reveal that zb–GeC has a higher static dielectric constant compared with that of zb–SiC. The optical functions are mainly associated with the interband transitions from the occupied valence bands (VBs) Ge[Formula: see text][Formula: see text] and C[Formula: see text][Formula: see text] states to Ge[Formula: see text][Formula: see text], [Formula: see text] and C[Formula: see text][Formula: see text] states of the unoccupied conduction bands (CBs).


Sign in / Sign up

Export Citation Format

Share Document