scholarly journals Controlling dynamical entanglement in a Josephson tunneling junction

2017 ◽  
Vol 31 (32) ◽  
pp. 1750255
Author(s):  
K. Ziegler

We analyze the evolution of an entangled many-body state in a Josephson tunneling junction and its dependence on the number of bosons and interaction strength. A N00N state, which is a superposition of two complementary Fock states, appears in the evolution with sufficient probability only for a moderate many-body interaction on an intermediate time scale. This time scale is inversely proportional to the tunneling rate. Many-body interaction strongly supports entanglement: The probability for creating an entangled state decays exponentially with the number of particles without many-body interaction, whereas it decays only like the inverse square root of the number of particles in the presence of many-body interaction.

2012 ◽  
Vol 708 ◽  
pp. 279-302 ◽  
Author(s):  
Peder A. Tyvand ◽  
Touvia Miloh

AbstractThe incompressible impulsive time scale for inviscid liquid sloshing in open rigid containers suddenly put into motion is defined as the intermediate time scale in between the acoustic time scale and the gravitational time scale. Surge and sway boundary-value problems for incompressible impulsive sloshing in some realistic container shapes are solved analytically to the leading order in a small-time expansion. A solution is provided for two types of horizontal cylinders: a triangular cylindrical wedge and a half-filled circular cylinder. The surface velocity and the hydrodynamic force with its corresponding virtual fluid mass are calculated. The cases of constant impulsive velocity and constant impulsive acceleration are linked by transformation equations. Flows with waterline singularities are discussed, being leading-order outer flows in terms of matched asymptotic expansions.


Author(s):  
Niels Breckwoldt ◽  
Thore Posske ◽  
Michael Thorwart

Abstract Braiding Majorana zero-modes around each other is a promising route towards topological quantum computing. Yet, two competing maxims emerge when implementing Majorana braiding in real systems: On the one hand, perfect braiding should be conducted adiabatically slowly to avoid non-topological errors. On the other hand, braiding must be conducted fast such that decoherence effects introduced by the environment are negligible, which are generally unavoidable in finite-size systems. This competition results in an intermediate time scale for Majorana braiding that is optimal, but generally not error-free. Here, we calculate this intermediate time scale for a T-junction of short one-dimensional topological superconductors coupled to a bosonic bath that generates fluctuations in the local electric potential, which stem from, e.g., environmental photons or phonons of the substrate. We thereby obtain boundaries for the speed of Majorana braiding with a predetermined gate fidelity. Our results emphasize the general susceptibility of Majorana-based information storage in finite-size systems and can serve as a guide for determining the optimal braiding times in future experiments.


2016 ◽  
Vol 121 (10) ◽  
pp. 2745-2760 ◽  
Author(s):  
B. Viner ◽  
M. Parker ◽  
G. Maze ◽  
P. Varnedoe ◽  
M. Leclerc ◽  
...  

Paleobiology ◽  
1981 ◽  
Vol 7 (4) ◽  
pp. 426-429 ◽  
Author(s):  
Lev R. Ginzburg

A simple theoretical argument shows that the evolutionary process will look gradual if it is considered on too fine or too coarse a time scale. There exists an intermediate time scale in which the distribution of evolutionary rates will appear as bimodal.


2015 ◽  
Vol 31 (12) ◽  
pp. 2285-2293
Author(s):  
Wei. YANG ◽  
◽  
Xiao-Lei. LI ◽  
Chang-Sheng. WANG

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


Sign in / Sign up

Export Citation Format

Share Document