scholarly journals Four revolutions in physics and the second quantum revolution — A unification of force and matter by quantum information

2018 ◽  
Vol 32 (26) ◽  
pp. 1830010 ◽  
Author(s):  
Xiao-Gang Wen

Newton’s mechanical revolution unifies the motion of planets in the sky and the falling of apples on Earth. Maxwell’s electromagnetic revolution unifies electricity, magnetism, and light. Einstein’s relativistic revolution unifies space with time, and gravity with space–time distortion. The quantum revolution unifies particle with waves, and energy with frequency. Each of those revolution changes our world view. In this article, we will describe a revolution that is happening now: the second quantum revolution which unifies matter/space with information. In other words, the new world view suggests that elementary particles (the bosonic force particles and fermionic matter particles) all originated from quantum information (qubits): they are collective excitations of an entangled qubit ocean that corresponds to our space. The beautiful geometric Yang–Mills gauge theory and the strange Fermi statistics of matter particles now have a common algebraic quantum informational origin.

1979 ◽  
Vol 19 (12) ◽  
pp. 3649-3652 ◽  
Author(s):  
Eve Kovacs ◽  
Shui-Yin Lo

1994 ◽  
Vol 49 (12) ◽  
pp. 6849-6856 ◽  
Author(s):  
Suzhou Huang ◽  
A. R. Levi
Keyword(s):  

2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.


2020 ◽  
pp. 258-270
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry and Eve have finally tested their quantum computer (QC) with resounding success! It may enable much faster and better modelling of complex pharmaceutical designs, long-term weather forecasts or brain process simulations than classical computers. A 1,000-qubit QC can process in a single step 21000 possible superposition states: its speedup is exponential in the number of qubits. Yet this wondrous promise requires overcoming the enormous hurdle of decoherence, which is why progress towards a large-scale QC has been painstakingly slow. To their dismay, their QC is “expropriated for the quantum revolution” in order to share quantum information among all mankind and thus impose a collective entangled state of mind. They set out to foil this totalitarian plan and restore individuality by decohering the quantum information channel. The appendix to this chapter provide a flavor of QC capabilities through a quantum algorithm that can solve problems exponentially faster than classical computers.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Yasuhiro Sekino

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.


2015 ◽  
pp. 165-167
Author(s):  
Celeste Labrunda Yeakley ◽  
Jeffrey D. Fiebrich
Keyword(s):  

1982 ◽  
pp. 187-197
Author(s):  
Murray Wolfson
Keyword(s):  

2008 ◽  
Vol 3 (7) ◽  
pp. 479-480
Author(s):  
P. de Jong
Keyword(s):  

2007 ◽  
Vol 22 (28) ◽  
pp. 5155-5172 ◽  
Author(s):  
R. B. MANN ◽  
E. M. POPESCU

Non-Abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher-dimensional (two-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-Abelian generalizations of the Yang–Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in 2+1 dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields — the ΣΦEA model — can be formulated as a higher gauge theory (as well as a standard gauge theory). Since the model has a very rich structure — it admits as solutions black-hole BTZ-like geometries, particle-like geometries as well as Robertson–Friedman–Walker cosmological-like expanding geometries — this opens a wide perspective for higher gauge theory to be tested and understood in a relevant gravitational context. Additionally, it offers the possibility of studying gravity in 2+1 dimensions coupled to matter in an entirely new framework.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1725-1729
Author(s):  
R. S. COSTA ◽  
S. B. DUARTE ◽  
M. CHIAPPARINI ◽  
T. MENDES

In this work we study the spectrum of the lowest screening masses for Yang–Mills theories on the lattice. We used the SU(2) gauge group in (3 + 1) dmensions. We adopted the multiple exponential method and the so-called "variational" method, in order to detect possible excited states. The calculations were done near the critical temperature of the confinement-deconfinement phase transition. We obtained values for the ratios of the screening masses consistent with predictions from universality arguments. A Monte Carlo evolution of the screening masses in the gauge theory confirms the validity of the predictions.


Sign in / Sign up

Export Citation Format

Share Document