The Dawn of Quantum Information

2020 ◽  
pp. 258-270
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry and Eve have finally tested their quantum computer (QC) with resounding success! It may enable much faster and better modelling of complex pharmaceutical designs, long-term weather forecasts or brain process simulations than classical computers. A 1,000-qubit QC can process in a single step 21000 possible superposition states: its speedup is exponential in the number of qubits. Yet this wondrous promise requires overcoming the enormous hurdle of decoherence, which is why progress towards a large-scale QC has been painstakingly slow. To their dismay, their QC is “expropriated for the quantum revolution” in order to share quantum information among all mankind and thus impose a collective entangled state of mind. They set out to foil this totalitarian plan and restore individuality by decohering the quantum information channel. The appendix to this chapter provide a flavor of QC capabilities through a quantum algorithm that can solve problems exponentially faster than classical computers.

2003 ◽  
Vol 03 (04) ◽  
pp. C9-C17
Author(s):  
MINORU FUJISHIMA

Quantum computers are believed to perform high-speed calculations, compared with conventional computers. However, the quantum computer solves NP (non-deterministic polynomial) problems at a high speed only when a periodic function can be used in the process of calculation. To overcome the restrictions stemming from the quantum algorithm, we are studying the emulation by a LSI (large scale integrated circuit). In this report, first, it is explained why a periodic function is required for the algorithm of a quantum computer. Then, it is shown that the LSI emulator can solve NP problems at a high speed without using a periodic function.


2002 ◽  
Vol 2 (6) ◽  
pp. 443-486
Author(s):  
R. Raussendorf ◽  
H. Briegel

In this paper we present the computational model underlying the one-way quantum computer which we introduced recently [Phys. Rev. Lett. {\bf{86}}, 5188 (2001)]. The one-way quantum computer has the property that any quantum logic network can be simulated on it. Conversely, not all ways of quantum information processing that are possible with the one-way quantum computer can be understood properly in network model terms. We show that the logical depth is, for certain algorithms, lower than has so far been known for networks. For example, every quantum circuit in the Clifford group can be performed on the one-way quantum computer in a single step.


2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


2002 ◽  
Vol 2 (3) ◽  
pp. 198-207
Author(s):  
D. Janzing

The well-known algorithm for quantum phase estimation requires that the considered unitary is available as a conditional transformation depending on the quantum state of an ancilla register. We present an algorithm converting an unknown n-qubit pair-interaction Hamiltonian into a conditional one such that standard phase estimation can be applied to measure the energy. Our essential assumption is that the considered system can be brought into interaction with a quantum computer. For large n the algorithm could still be applicable for estimating the density of energy states and might therefore be useful for finding energy gaps in solid states.


2007 ◽  
Vol 05 (01n02) ◽  
pp. 223-228 ◽  
Author(s):  
ANNALISA MARZUOLI ◽  
MARIO RASETTI

We resort to considerations based on topological quantum field theory to outline the development of a possible quantum algorithm for the evaluation of the permanent of a 0 - 1 matrix. Such an algorithm might represent a breakthrough for quantum computation, since computing the permanent is considered a "universal problem", namely, one among the hardest problems that a quantum computer can efficiently handle.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Sign in / Sign up

Export Citation Format

Share Document