Effects of heat-treated HNTs on the mechanical properties of GFRP under moisture absorption

2018 ◽  
Vol 32 (19) ◽  
pp. 1840070 ◽  
Author(s):  
Y. H. Kim ◽  
S. J. Park ◽  
J. S. Choi ◽  
K. M. Moon ◽  
C. W. Bae

In this study, halloysite nanotubes (HNTs) were heat-treated at various temperatures in order to minimize particle aggregation, and the mechanical properties in the humid environment was compared and analyzed to prevent the pore formation and achieve an optimal bonding with epoxy resin. As a result, the glass fiber-reinforced plastic (GFRP), with 0.5 wt.% heat-treated HNT at 700[Formula: see text]C, showed the highest moisture absorption resistance, tensile strength and interlaminar shear strength.

2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540003 ◽  
Author(s):  
Yun-Hae Kim ◽  
Soo-Jeong Park ◽  
Jin-Woo Lee ◽  
Kyung-Man Moon

Halloysite nanotube, which has been used in the polymer, has been spotlighted as a useful functional materials in the improvement of mechanical properties. In the current study, we established the optimal nanoparticle dispersion and analyzed the mechanical characteristics and the behavior of composites reinforced by HNTs have been synthesized by dispersing HNTs to the unsaturated polyester resin (UPR) and their mechanical characteristics, especially the tensile strength, interlaminar shear strength have been analyzed. Additionally, the reinforcement effect and its variation according to the amount of HNTs was also studied.


Sign in / Sign up

Export Citation Format

Share Document