Ab initio calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO

2018 ◽  
Vol 32 (03) ◽  
pp. 1850025 ◽  
Author(s):  
F. Goumrhar ◽  
L. Bahmad ◽  
O. Mounkachi ◽  
A. Benyoussef

In order to promote suitable material to be used in spintronics devices, this study purposes to evaluate the magnetic properties of the titanium and vanadium-doped zinc-blende ZnO from first-principles. The calculations of these properties are based on the Korringa–Kohn–Rostoker (KKR) method combined with the coherent potential approximation (CPA), using the local density approximation (LDA). We have calculated and discussed the density of states (DOSs) in the energy phase diagrams for different concentration values, of the dopants. We have also investigated the magnetic and half-metallic properties of this doped compound. Additionally, we showed the mechanism of the exchange coupling interaction. Finally, we estimated and studied the Curie temperature for different concentrations.

2016 ◽  
Vol 30 (21) ◽  
pp. 1650147 ◽  
Author(s):  
S. Ferahtia ◽  
S. Saib ◽  
N. Bouarissa

The present study deals with first-principles calculations of the thermal properties of ZnTe in the two phases namely, zinc-blende and wurtzite. The calculations are mainly performed using the density functional theory with the local density approximation and response-function calculations. The full phonon dispersions throughout the Brillouin zone are presented. The temperature dependence of the lattice parameters, bulk modulus, entropy and heat capacity are examined and discussed. Our findings agree reasonably well with those available in the literature.


1995 ◽  
Vol 384 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Yuichi Hashi ◽  
Jing-Zhi Yu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTThe electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 44633-44640
Author(s):  
D. P. Rai ◽  
Lalrinkima ◽  
Lalhriatzuala ◽  
L. A. Fomin ◽  
I. V. Malikov ◽  
...  

We report the electronic and magnetic properties along with the Curie temperature (TC) of the inverse full Heusler alloy (HA) Fe2CoAl obtained using the first-principles computational method.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xian-Yang Feng ◽  
Zhe Wang ◽  
Chang-Wen Zhang ◽  
Pei-Ji Wang

The electronic and magnetic properties of IIIA group doped ZnO nanosheets (ZnONSs) are investigated by the first principles. The results show that the band gap of ZnO nanosheets increases gradually along with Al, Ga, and In ions occupying Zn sites and O sites. The configuration of Al atoms replacing Zn atoms is more stable than other doped. The system shows half-metallic characteristics for In-doped ZnO nanosheets.


SPIN ◽  
2020 ◽  
Vol 10 (03) ◽  
pp. 2050022 ◽  
Author(s):  
K. Belkacem ◽  
Y. Zaoui ◽  
S. Amari ◽  
L. Beldi ◽  
B. Bouhafs

The first-principles approach based on density functional theory (DFT) and the full-potential linearized augmented plane-wave method were employed to investigate the structural, elastic, electronic and magnetic properties of Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys. The generalized gradient approximation (GGA) as parameterized by Perdew, Burke and Ernzerhof (PBE) and the modified Becke–Johnson exchange potential were used. As far as we know, we present our results which for the first time quantitatively account for the electronic structures and magnetic properties of Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys. From the total energy calculation using three possible atomic configurations ([Formula: see text], [Formula: see text] and [Formula: see text]), it is found that the Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys are more stable in the ferromagnetic [Formula: see text]-phase. From our estimated elastic constants [Formula: see text], it is found that all the considered Heusler alloys are mechanically stable in the [Formula: see text]-phase. We have also investigated the robustness of the half-metallicity with respect to the variation of lattice constants in these alloys. We have found that these alloys are half-metallic ferromagnets (HMFs) with a magnetic moment of 2[Formula: see text][Formula: see text] per formula unit at their equilibrium volumes. The spin-polarized electronic band structure and density of states of these quaternary half-Heusler alloys calculated by GGA (mBJ-GGA) show that the minority spin channels have metallic nature and the majority spin channels have a semiconductor character with half-metallic gaps of 0.49[Formula: see text]eV (2.17[Formula: see text]eV), 0.72[Formula: see text]eV (2.28[Formula: see text]eV) and 0.96[Formula: see text]eV (2.22[Formula: see text]eV) for NaCaNO, NaSrNO and NaBaNO quaternary half-Heusler alloys, respectively. Analysis of the density of states and the spin charge density of these quaternary alloys indicates that their magnetic moments mainly originate from the strong spin-polarization of 2[Formula: see text] states of N atoms and O atoms.


1994 ◽  
Vol 349 ◽  
Author(s):  
Andrew A. Quong ◽  
Mark R. Pederson

ABSTRACTWe use the local-density-approximation to the density-functional theory to determine the axial polarizabilities of fullerene tubules as a function of length and winding topologies. Specifically, we present linear polarizabilities for tubules of composition C12H24, C36H24, C40H20 and C60H24. The size-dependent variation in the dipole-coupled gaps between pairs of occupied and unoccupied levels leads to enhancements in the polarizability per valence electron as the length of the tubule increases. The results are compared to recent densityfunctional based calculations of the linear and nonlinear polarizabilities for fullerene and benzene molecules.


2006 ◽  
Vol 959 ◽  
Author(s):  
Ghouti Merad ◽  
Benali Rerbal ◽  
Hafid Aourag ◽  
Joël Cibert

ABSTRACTAn atomistic modelling based on density functional theory within the framework of the local density approximation is used to show the trends in the energetic properties of single and double defects in CdTe semiconductor, without phase transformation. A systematic study of vacancies, Mn substituting Cd atoms in a supercell structure consisting of 16-atoms is presented. The changes of structural properties and lattice parameters due to the addition of Mn-atomic type defects in CdTe matrix are compared, and the number of vacancies is also determined from the total energy calculations.


Sign in / Sign up

Export Citation Format

Share Document