Multi-attribute ranking method for identifying key nodes in complex networks based on GRA

2018 ◽  
Vol 32 (32) ◽  
pp. 1850363 ◽  
Author(s):  
Pingle Yang ◽  
Guiqiong Xu ◽  
Huiping Chen

How to identify key nodes is a challenging and significant research issue in complex networks. Some existing evaluation indicators of node importance have the disadvantages of limited application scope and one-sided evaluation results. This paper takes advantage of multiple centrality measures comprehensively, by regarding the identification of key nodes as a multi-attribute decision making (MADM) problem. Firstly, a new local centrality (NLC) measure is put forward through considering multi-layer neighbor nodes and clustering coefficients. Secondly, combining the grey relational analysis (GRA) method and the susceptible-infectious-recovered (SIR) model, a modified dynamic weighted technique for order preference by similarity to ideal solution (TOPSIS) method is proposed. Finally, the effectiveness of the NLC is illustrated by applications to nine actual networks. Furthermore, the experimental results on four actual networks demonstrate that the proposed method can identify key nodes more accurately than the existing weighted TOPSIS method.

2018 ◽  
Vol 32 (19) ◽  
pp. 1850216 ◽  
Author(s):  
Pingle Yang ◽  
Xin Liu ◽  
Guiqiong Xu

Identifying the influential nodes in complex networks is a challenging and significant research topic. Though various centrality measures of complex networks have been developed for addressing the problem, they all have some disadvantages and limitations. To make use of the advantages of different centrality measures, one can regard influential node identification as a multi-attribute decision-making problem. In this paper, a dynamic weighted Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is developed. The key idea is to assign the appropriate weight to each attribute dynamically, based on the grey relational analysis method and the Susceptible–Infected–Recovered (SIR) model. The effectiveness of the proposed method is demonstrated by applications to three actual networks, which indicates that our method has better performance than single indicator methods and the original weighted TOPSIS method.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1739
Author(s):  
Zeeshan Ali ◽  
Tahir Mahmood ◽  
Miin-Shen Yang

The theory of complex spherical fuzzy sets (CSFSs) is a mixture of two theories, i.e., complex fuzzy sets (CFSs) and spherical fuzzy sets (SFSs), to cope with uncertain and unreliable information in realistic decision-making situations. CSFSs contain three grades in the form of polar coordinates, e.g., truth, abstinence, and falsity, belonging to a unit disc in a complex plane, with a condition that the sum of squares of the real part of the truth, abstinence, and falsity grades is not exceeded by a unit interval. In this paper, we first consider some properties and their operational laws of CSFSs. Additionally, based on CSFSs, the complex spherical fuzzy Bonferroni mean (CSFBM) and complex spherical fuzzy weighted Bonferroni mean (CSFWBM) operators are proposed. The special cases of the proposed operators are also discussed. A multi-attribute decision making (MADM) problem was chosen to be resolved based on the proposed CSFBM and CSFWBM operators. We then propose the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method based on CSFSs (CSFS-TOPSIS). An application example is given to delineate the proposed methods and a close examination is undertaken. The advantages and comparative analysis of the proposed approaches are also presented.


2020 ◽  
Vol 08 (01) ◽  
pp. 93-112
Author(s):  
Péter Marjai ◽  
Attila Kiss

For decades, centrality has been one of the most studied concepts in the case of complex networks. It addresses the problem of identification of the most influential nodes in the network. Despite the large number of the proposed methods for measuring centrality, each method takes different characteristics of the networks into account while identifying the “vital” nodes, and for the same reason, each has its advantages and drawbacks. To resolve this problem, the TOPSIS method combined with relative entropy can be used. Several of the already existing centrality measures have been developed to be effective in the case of static networks, however, there is an ever-increasing interest to determine crucial nodes in dynamic networks. In this paper, we are investigating the performance of a new method that identifies influential nodes based on relative entropy, in the case of dynamic networks. To classify the effectiveness, the Suspected-Infected model is used as an information diffusion process. We are investigating the average infection capacity of ranked nodes, the Time-Constrained Coverage as well as the Cover Time.


2021 ◽  
Author(s):  
Sarkhosh S. Chaharborj ◽  
Shahriar S. Chaharborj ◽  
Phang Pei See

Abstract We study importance of influential nodes in spreading of epidemic COVID-19 in a complex network. We will show that quarantine of important and influential nodes or consider of health protocols by efficient nodes is very helpful and effective in the controlling of spreading epidemic COVID-19 in a complex network. Therefore, identifying influential nodes in complex networks is the very significant part of dependability analysis, which has been a clue matter in analyzing the structural organization of a network. The important nodes can be considered as a person or as an organization. To find the influential nodes we use the technique for order preference by similarity to ideal solution (TOPSIS) method with new proposed formula to obtain the efficient weights. We use various centrality measures as the multi-attribute of complex network in the TOPSIS method. We define a formula for spreading probability of epidemic disease in a complex network to study the power of infection spreading with quarantine of important nodes. In the following, we use the Susceptible–Infected (SI) model to figure out the performance and efficiency of the proposed methods. The proposed method has been examined for efficiency and practicality using numerical examples.


Author(s):  
Farhat Anwar ◽  
Mosharrof Masud ◽  
Burhan Ul Islam ◽  
Rashidah Funke Olanrewaju

<p>In next-generation wireless networks, a Multi-Mode Device (MMD) can be connected with available Radio Access Technology (RAT) in a Heterogeneous Wireless Network (HWN). The appropriate RAT selection is essential to achieve expected Quality of Service (QoS) in HWN. There are many factors to select an appropriate RAT in HWN including Data rate, Power consumption, Security, Network delay, Service price, etc. Nowadays, the MMDs are capable to handle with multiple types of services like voice, file downloading, video streaming. Considering numerous factors and multiple types of services, it is a great challenge for MMDs to select the appropriate RAT. A Multi-Attribute Decision Making (MADM) method to deal with numerous attributes to achieve the expected goal is Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This research utilized TOPSIS method to evaluate its proposed algorithm to choose the proper RAT for single and dual call services. The algorithm applies users' preference of a specific RAT that varies for diverse categories of calls. It also aggregates the assigned call weight and call priority to choose the RAT for group call admission for different scenarios. The highest closeness coefficient has been considered the appropriate networks among other networks. 100 call admission into three networks has been simulated and has been observed.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Zhang ◽  
Qingpu Zhang ◽  
Hamidreza Karimi

How to seek the important nodes of complex networks in product research and development (R&D) team is particularly important for companies engaged in creativity and innovation. The previous literature mainly uses several single indicators to assess the node importance; this paper proposes a multiple attribute decision making model to tentatively solve these problems. Firstly, choose eight indicators as the evaluation criteria, four from centralization of complex networks: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality and four from structural holes of complex networks: effective size, efficiency, constraint, and hierarchy. Then, use fuzzy analytic hierarchy process (AHP) to obtain the weights of these indicators and use technique for order preference by similarity to an ideal solution (TOPSIS) to assess the importance degree of each node of complex networks. Finally, taking a product R&D team of a game software company as a research example, test the effectiveness, operability, and efficiency of the method we established.


2017 ◽  
Vol 5 (4) ◽  
pp. 367-375 ◽  
Author(s):  
Yu Wang ◽  
Jinli Guo ◽  
Han Liu

AbstractCurrent researches on node importance evaluation mainly focus on undirected and unweighted networks, which fail to reflect the real world in a comprehensive and objective way. Based on directed weighted complex network models, the paper introduces the concept of in-weight intensity of nodes and thereby presents a new method to identify key nodes by using an importance evaluation matrix. The method not only considers the direction and weight of edges, but also takes into account the position importance of nodes and the importance contributions of adjacent nodes. Finally, the paper applies the algorithm to a microblog-forwarding network composed of 34 users, then compares the evaluation results with traditional methods. The experiment shows that the method proposed can effectively evaluate the node importance in directed weighted networks.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950395 ◽  
Author(s):  
Pengli Lu ◽  
Chen Dong

The safety and robustness of the network have attracted the attention of people from all walks of life, and the damage of several key nodes will lead to extremely serious consequences. In this paper, we proposed the clustering H-index mixing (CHM) centrality based on the H-index of the node itself and the relative distance of its neighbors. Starting from the node itself and combining with the topology around the node, the importance of the node and its spreading capability were determined. In order to evaluate the performance of the proposed method, we use Susceptible–Infected–Recovered (SIR) model, monotonicity and resolution as the evaluation standard of experiment. Experimental results in artificial networks and real-world networks show that CHM centrality has excellent performance in identifying node importance and its spreading capability.


2014 ◽  
Vol 952 ◽  
pp. 20-24 ◽  
Author(s):  
Xue Jun Xie

The selection of an optimal material is an important aspect of design for mechanical, electrical, thermal, chemical or other application. Many factors (attributes) need to be considered in material selection process, and thus material selection problem is a multi-attribute decision making (MADM) problem. This paper proposes a new MADM method for material selection problem. G1 method does not need to test consistency of the judgment matrix. Thus it is better than AHP. In this paper, firstly, we use the G1 method to determine the attribute weight. Then TOPSIS method is used to calculate the closeness of the candidate materials with respect positive solution. A practical material selection case is used to demonstrate the effectiveness and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document