Effects of removing temperature of reduction gas on the luminescence characteristics of Li2BaSiO4:0.003EU2+ green phosphor

2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040159
Author(s):  
Jie Li ◽  
Yang-Ming Lu ◽  
Qing-Hao Yang ◽  
Cheng-Fu Yang

We had successfully synthesized green-emitting phosphors based on Li2BaSiO4 material activated by bivalent europium ions (Eu[Formula: see text]) using a solid-state reaction method in a reducing gas environment and investigated their luminescence properties. The Li2BaSiO4:0.003Eu[Formula: see text] (LSB-Eu) phosphors were synthesized at 850[Formula: see text]C for 1 h, and the reduction gas was removed at 500[Formula: see text]C, 600[Formula: see text]C, 700[Formula: see text]C and 800[Formula: see text]C, respectively. XRD pattern showed that the Li2BaSiO4, Ba2SiO4 and Li4SiO4 phases were observed in the synthesized Li2BaSiO4 composition. As the reduction gas was removed at 800[Formula: see text]C, the LSB-Eu phosphor emitted a weak red light rather than a green light. Two weak emission peaks were found at about 588 nm and 613 nm corresponding to [Formula: see text] and [Formula: see text] transitions. As temperature to remove the reduction gas was lower than 800[Formula: see text]C, the emission spectra of LSB-Eu phosphors reveled a broad peak centered at 501 nm, which emitted a green color. The intensity of photoluminescence excitation (PLE) photoluminescence emission (PL) spectra increased as the removing temperature was decreased from 700[Formula: see text]C to 500[Formula: see text]C and saturated at 500[Formula: see text]C. These results show that LSB-Eu can be a noteworthy candidate of green-emitting phosphor for the investigation of white light-emitting diodes (WLEDs).

2011 ◽  
Vol 415-417 ◽  
pp. 1333-1339
Author(s):  
Guo Hua Song ◽  
Bin Jiang ◽  
Jian Wen Miao ◽  
Bang Dong Ding

The Y4MgSi3O13:Tb3+,Ce3+green phosphors are synthesized by sol-gel method, the preparation temperature, reduction atmosphere and luminescence characteristics of Y4MgSi3O13doped with single Ce3+ions and Ce3+,Tb3+ions have been studied. The excitation and emission spectra of phosphors is determined by fluorescence spectrophotometer. The results show that: luminous intensity of Y4MgSi3O13:Tb3+phosphors increased after doped with Ce3+ions and the optimal doping concentration of Ce3+is 0.04. Y3.94MgSi3O13: 0.02Tb3+,0.04Ce3+green phosphor has the best luminescence characteristics under reduction atmosphere(H2:N2=1:3) at 1000°C, the phosphor gives intense green emission at 550nm originating from the5D4→7F5transition of Tb3+ions.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744058
Author(s):  
Rong Yang ◽  
Huidong Tang

A novel phosphor, K2MgSiO4:Eu[Formula: see text], was synthesized by a solid-state reaction method. The phase formation was checked by X-ray powder diffraction. The photoluminescence excitation, emission spectra, decay curve and CIE coordinates of samples with different Eu[Formula: see text] ion concentrations were investigated in detail. The excitation spectra show a broad wavelength range of 225–470 nm. The K2MgSiO4:Eu[Formula: see text] phosphors exhibit highly red emission peaking at about 616 nm which is assigned to the 5D[Formula: see text]F2 transition of Eu[Formula: see text]ions under the excitation of near-ultraviolet (NUV) (394 nm) light. The critical quenching concentration of Eu[Formula: see text] doped in the K2MgSiO4: Eu[Formula: see text] phosphors was about 10 mol.% and the concentration quenching mechanism was dipole–dipole interactions between Eu[Formula: see text] ions. The results indicate that K2MgSiO4:Eu[Formula: see text] is a potential red phosphor candidate for NUV-pumped white light emitting diodes.


2013 ◽  
Vol 401-403 ◽  
pp. 796-799 ◽  
Author(s):  
Jia Yue Sun ◽  
Dian Peng Cui ◽  
Bing Xue ◽  
Guang Chao Sun

Single-phase Ba5(PO4)3Cl:Ce3+,Tb3+ (BPCl:Ce3+,Tb3+) samples have been synthesized via solid-state reaction method. The phase structure and luminescence properties are characterized using powder X-ray diffraction (XRD), photoluminescence excitation and emission spectra. Effective energy transfer occurs from Ce3+ to Tb3+ due to the observed spectral overlap between the emission band of Ce3+ and the excitation band of Tb3+. Ce3+/Tb3+-codoped Ba5(PO4)3Cl shows more intense yellowish-green light compared to that of Tb3+-doped sample under UV light excitation.


2016 ◽  
Vol 16 (4) ◽  
pp. 3489-3493 ◽  
Author(s):  
Renping Cao ◽  
Hongdong Xue ◽  
Xiaoguang Yu ◽  
Fen Xiao ◽  
Donglan Wu ◽  
...  

A series of Mn4+ doped SrMgAl10O17 phosphors are synthesized by a conventional solid-state reaction method in air, and their crystal structure, morphology, and fluorescence properties are investigated. The luminescence properties show clearly that SrMgAl10O17:Mn4+ phosphor can be excited by UV (200–380 nm), near UV (380–420 nm), and blue (420–480 nm) bands of LEDs chip, and emits red light in the range of 600 nm to 750 nm with satisfying CIE chromaticity coordinates (0.7207, 0.2793). The optimal doping concentration of Mn4+ ion is ∼1 mol%, and its lifetime is ∼1.15 ms. The possible luminous mechanism of Mn4+ ion is discussed by Tanabe-Sugano diagram. These experiment results indicate that Mn4+ doped SrMgAl10O17 phosphors can be a potential application as a red-emitting phosphor candidate in white LEDs.


2015 ◽  
Vol 3 (24) ◽  
pp. 6341-6349 ◽  
Author(s):  
Kai Li ◽  
Ju Xu ◽  
Xuechao Cai ◽  
Jian Fan ◽  
Yang Zhang ◽  
...  

A series of Eu2+-doped α-Ca1.65Sr0.35SiO4 phosphors synthesized via the high-temperature solid-state reaction method can emit intense green light under UV/n-UV excitation, which show potential application in UV/n-UV-pumped white-light-emitting diodes.


2015 ◽  
Vol 33 (2) ◽  
pp. 331-334 ◽  
Author(s):  
An Tang ◽  
Tao Ma ◽  
Liduo Gu ◽  
Yongtao Zhao ◽  
Junhui Zhang ◽  
...  

AbstractInNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV) 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.


NANO ◽  
2019 ◽  
Vol 14 (09) ◽  
pp. 1950110
Author(s):  
Jing Liu ◽  
Chia-Ching Wu ◽  
Cheng-Fu Yang ◽  
Lan-Sin Liou

Red-light-emitting phosphors based on Sr[Formula: see text]Ca[Formula: see text]SiO4 activated by trivalent europium ions (Eu[Formula: see text] were successfully synthesized using a solid-state reaction method, and their luminescence properties were investigated. The photoluminescence spectra of Sr[Formula: see text]Ca[Formula: see text]SiO4:[Formula: see text] Eu[Formula: see text] phosphors synthesized at different temperatures and times and with different Eu[Formula: see text] concentrations revealed emission peaks at 591[Formula: see text]nm, 612[Formula: see text]nm and 655[Formula: see text]nm, which can probably be attributed to the transition of Eu[Formula: see text] ions from 5D0 to 7FJ (J = 1, 2 and 3). The emission intensities of the transitions from 5D0 to 7FJ (J = 1, 2 and 3) increased as the synthesizing temperature rose for 2[Formula: see text]h. Comparison with the relevant International Commission on Illumination diagram showed that Sr[Formula: see text]Ca[Formula: see text]SiO4:[Formula: see text] Eu[Formula: see text] phosphors synthesized at different temperatures and times and with different Eu[Formula: see text] concentrations all emitted red light, with phosphors synthesized at 1300∘C and with concentrations of 1.5[Formula: see text]at.% yielding the maximum emission intensity. These results show Sr[Formula: see text]Ca[Formula: see text]SiO4:1.5% Eu[Formula: see text] to be a noteworthy red-light-emitting phosphor candidate for white light-emitting diodes (WLEDs).


2013 ◽  
Vol 811 ◽  
pp. 181-185 ◽  
Author(s):  
Lan Tu Ya Wu

The rare-earth Eu3+doped BaY2O4red phosphor synthesized by citric acid sol-gel method. The structure, morphology and composition of the red phosphor were characterized by X-ray diffraction, scanning electron microscopy and infrared spectroscopy. The results show that the distribution of the pure phase BaY2O4: Eu3+particles after annealing at 800 °C was irregular, small size of particle is 0.2 μm to 0.4 μm. The excitation spectra of synthesized phosphor at 610 nm monitoring were composed of a broadband and a series of sharp peaks, the strongest excitation peak at 466 nm, the secondly at 395nm. It was indicated that BaY2O4: Eu3+phosphor matching with the widespread applied the output wavelengths of UV LED and blue LED chips. The main emission spectra of samples under blue light excitation is Eu3+ions5D07F2electric dipole transition with a strong red light, so that the BaY2O: Eu3+phosphor may be a better candidate for red component for white LED.


2017 ◽  
Vol 41 (18) ◽  
pp. 9826-9839 ◽  
Author(s):  
Boddula Rajamouli ◽  
Rachna Devi ◽  
Abhijeet Mohanty ◽  
Venkata Krishnan ◽  
Sivakumar Vaidyanathan

The red light emitting diode (LED) was fabricated by using europium complexes with InGaN LED (395 nm) and shown digital images, corresponding CIE color coordinates (red region) as well as obtained highest quantum yield of the thin film (78.7%).


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).


Sign in / Sign up

Export Citation Format

Share Document