Effects of electron-withdrawing groups in imidazole-phenanthroline ligands and their influence on the photophysical properties of EuIII complexes for white light-emitting diodes

2017 ◽  
Vol 41 (18) ◽  
pp. 9826-9839 ◽  
Author(s):  
Boddula Rajamouli ◽  
Rachna Devi ◽  
Abhijeet Mohanty ◽  
Venkata Krishnan ◽  
Sivakumar Vaidyanathan

The red light emitting diode (LED) was fabricated by using europium complexes with InGaN LED (395 nm) and shown digital images, corresponding CIE color coordinates (red region) as well as obtained highest quantum yield of the thin film (78.7%).

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Lung-Chien Chen ◽  
Wen-Wei Lin ◽  
Jun-Wei Chen

This study concerns the characteristics of white GaN-based light-emitting diode (LED) on flexible substrates. The thin film GaN-based blue LEDs were directly transferred from sapphire onto the flexible polydimethylsiloxane (PDMS) substrates by laser lift-off (LLO) process. The PDMS substrates were incorporated 10–40% cerium doped yttrium aluminum garnet phosphor, YAG:Ce3+, and formed the GaN-based white LEDs. The white LEDs prepared by the GaN-based LEDs on the YAG-PDMS substrates reveal one peak at 470 nm corresponding to the emission of the GaN-based LED and a broadband included five weak peaks caused by YAG:Ce3+phosphors.


Nanoscale ◽  
2021 ◽  
Author(s):  
Dongdong Yan ◽  
Qionghua Mo ◽  
Shuangyi Zhao ◽  
Wensi Cai ◽  
Zhigang Zang

With a high photoluminescence quantum yield (PLQY) being able to exceed 90% for those prepared by hot injection method, CsPbBr3 quantum dots (QDs) have attracted intensive attentions for white light-emitting...


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 209
Author(s):  
Gopi Chandra Adhikari ◽  
Saroj Thapa ◽  
Yang Yue ◽  
Hongyang Zhu ◽  
Peifen Zhu

All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies.


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).


2021 ◽  
Vol 10 (4) ◽  
pp. 1930-1935
Author(s):  
Phan Xuan Le ◽  
Le Hung Tien

Among the structures using for fabricating white light-emitting diodes (WLEDs) such as the conformal coating or in-cup geometries, the remote phosphor structure gives the highest luminous efficacy. However, in terms of color quality, its performance is not as good as the others. The red-light compensation has been reported as the effective solution for enhancing the color quality of WLEDs. Hence, this study adopted the idea and applied to the dual-layer phosphor structure. The phosphor used to boost the red color in light formation is (Y,Gd)BO3:Eu particle. The dual-layer remote phosphor structure was simulated with the red (Y,Gd)BO3:Eu phosphor layer above the original yellow phosphor YAG:Ce3+ one. The WLEDs with different correlated color temperatures of 5600 K, 6600 K and 7700K were experimented. Mie-theory and Lambert-Beer law were applied to examine the results. The growth in color rendering index (CRI) and color quality scale (CQS) with the increase of (Y,Gd)BO3:Eu phosphor concentration was observed. Nevertheless, the lumen efficacy would be degraded if the concentration was over a certain number. The information provided in this article is useful for the development of high-power WLED production with greater color quality.


Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 170 ◽  
Author(s):  
Alla Silkina ◽  
Bethan Kultschar ◽  
Carole A. Llewellyn

Improving mass cultivation of cyanobacteria is a goal for industrial biotechnology. In this study, the mass cultivation of the thermophilic cyanobacterium Chlorogloeopsis fritschii was assessed for biomass production under light-emitting diode white light (LEDWL), far-red light (FRL), and combined white light and far-red light (WLFRL) adaptation. The induction of chl f was confirmed at 24 h after the transfer of culture from LEDWL to FRL. Using combined light (WLFRL), chl f, a, and d, maintained the same level of concentration in comparison to FRL conditions. However, phycocyanin and xanthophylls (echinone, caloxanthin, myxoxanthin, nostoxanthin) concentration increased 2.7–4.7 times compared to LEDWL conditions. The productivity of culture was double under WLFRL compared with LEDWL conditions. No significant changes in lipid, protein, and carbohydrate concentrations were found in the two different light conditions. The results are important for informing on optimum biomass cultivation of this species for biomass production and bioactive product development.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Junli Huang ◽  
Liya Zhou ◽  
Yuwei Lan ◽  
Fuzhong Gong ◽  
Qunliang Li ◽  
...  

AbstractEu3+-doped CaZrO3 phosphor with perovskite-type structure was synthesized by the high temperature solid-state method. The samples were characterized by X-ray diffraction, scanning electron microscopy, fluorescence spectrophotometer and UV-vis spectrophotometer, respectively. XRD analysis showed that the formation of CaZrO3 was at the calcinations temperature of 1400°C. The average diameter of CaZrO3 with 4 mol% doped-Eu3+ was 2µm. The PL spectra demonstrated that CaZrO3:Eu3+ phosphor could be excited effectively in the near ultraviolet light region (397 nm) and emitted strong red-emission lines at 616 nm corresponding to the forced electric dipole 5 D 0 → 7 F 2 transitions of Eu3+. Meanwhile, the light-emitting diode was fabricated with the Ca0.96ZrO3:Eu0.043+ phosphor, which can efficiently absorb ∼ 400 nm irradiation and emit red light. Therefore Ca0.96ZrO3:Eu0.043+ may have applications for a near ultraviolet InGaN chip-based white light-emitting diode.


2019 ◽  
Vol 55 (81) ◽  
pp. 12164-12167 ◽  
Author(s):  
Ya Liu ◽  
Miaoran Zhang ◽  
Yanfen Wu ◽  
Rui Zhang ◽  
Yi Cao ◽  
...  

A one-step solvothermal method was exploited to synthesize blue, yellow and red carbon dots with high quantum yield by altering the corresponding reaction solvent.


2016 ◽  
Vol 697 ◽  
pp. 727-732 ◽  
Author(s):  
Bo Cui ◽  
Qing Hong Zhang ◽  
Hong Zhi Wang ◽  
Yao Gang Li

A new kind of Ca4Si2O7F2:Ce3+, Tb3+, Sm3+ oxyfluoride phosphor micron belt mat was obatained by simply electrospinning process and subsequent heat treatment. XRD result shows that a pure Ca4Si2O7F2 phase can be obtained at low temperature of around 900 °C. The micron belt precursor has a smooth surface and uniform morphology, and the width and thickness of the belt is about 2 μm and 200 nm. The morphology of micron belt is well retained after heat treatment, forming a plat phosphor mat consisting of uniform micron belt network. Ca4Si2O7F2:Ce3+, Ca4Si2O7F2:Tb3+, and Ca4Si2O7F2:Sm3+ exhibit the characteristic emissions of Ce3+ (4f7→4f65d1, blue), Tb3+ (4f8→4f75d, green), and Sm3+ (4f6→4f65d, red) under the excitation of near-UV light, respectively. By adjusting the doping concentration of Ce3+, Tb3+, Sm3+ ions a white emission in a single phase was obtained under the excitation of 360 nm. We have demonstrated that Ca4Si2O7F2:Ce3+, Tb3+, Sm3+ phosphor mat can be a promising candidate for a color-tunable phosphor mat applied in a near-UV White light emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document