Modeling on the temperature dependence of the magnetic susceptibility and electrical conductivity oscillations in narrow-gap semiconductors

2020 ◽  
Vol 34 (07) ◽  
pp. 2050052
Author(s):  
U. I. Erkaboev ◽  
G. Gulyamov ◽  
J. I. Mirzaev ◽  
R. G. Rakhimov

Electrical conductivity oscillations, magnetic susceptibility oscillations and electronic heat capacity oscillations for narrow-gap electronic semiconductors are considered at different temperatures. A theory is constructed of the temperature dependence of quantum oscillation phenomena in narrow-gap electronic semiconductors, taking into account the thermal smearing of Landau levels. Oscillations of longitudinal electrical conductivity in narrow-gap electronic semiconductors at various temperatures are studied. An integral expression is obtained for the longitudinal conductivity in narrow-gap electronic semiconductors, taking into account the diffuse broadening of the Landau levels. A formula is obtained for the dependence of the oscillations of longitudinal electrical conductivity on the bandgap of narrow-gap semiconductors. The theory is compared with the experimental results of [Formula: see text]. A theory is constructed of the temperature dependence of the magnetic susceptibility oscillations for narrow-gap electronic semiconductors. Using these oscillations of magnetic susceptibility, the cyclotron effective masses of electrons are determined. The calculation results are compared with experimental data. The proposed model explains the experimental results in [Formula: see text] at different temperatures.

A theory is constructed of the temperature dependence of quantum oscillation phenomena in narrow-gap electronic semiconductors, taking into account the thermal smearing of Landau levels. Oscillations of longitudinal electrical conductivity in narrow-gap electronic semiconductors at various temperatures are studied. An integral expression is obtained for the longitudinal conductivity in narrow-gap electronic semiconductors, taking into account the diffuse broadening of the Landau levels. A formula is obtained for the dependence of the oscillations of longitudinal electrical conductivity on the band gap of narrow-gap semiconductors. The calculation results are compared with experimental data.


Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


1982 ◽  
Vol 20 ◽  
Author(s):  
M Elahy ◽  
G. Dresselhaus

ABSTRACTPrecise measurements of the temperature dependence of the magnetic susceptibility for stage 2 and 5 graphite-CoCl2 intercalation compounds are reported. Comparison of the experimental results with theoretical calculations based on a two-dimensional planar model show agreement with theory, suggesting that graphite intercalation compounds represent ideal two-dimensional magnetic systems.


Author(s):  
Sabah A. Salman ◽  
Nabeel A. Bakr ◽  
Mohammed H. Mahmood

The aim of this paper is to prepare and study the (D.C.) electrical conductivity of (PVA-Ni (NO3)2) composites at different temperatures. For that purpose, PVA films with Ni (NO3)2 salt additive were prepared with different concentrations‎ 2, 4, 6, 8 and 10 wt. % and with thickness of 45μm by using casting technique. The experimental results for PVA-Ni (NO3)2) ‎films show that the (D.C.) electrical‏ ‏conductivity increased with increasing ‎the filler content and the‏ ‏temperature, and the activation energy was ‎decreased with increasing the filler content‎.


2020 ◽  
Vol 12 (3) ◽  
pp. 03012-1-03012-5
Author(s):  
G. Gulyamov ◽  
◽  
U. I. Erkaboev ◽  
R. G. Rakhimov ◽  
J. I. Mirzaev ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The influence of pressure on the oscillations of Shubnikov-de Haas (ShdH) and de Haas-van Alphen (dHvA) in semiconductors is studied. Working formula for the calculation of the influence of hydrostatic pressure on the Landau levels of electrons is obtained. The temperature dependence of quantum oscillations for different pressures is determined. The calculation results are compared with experimental data. It is shown that the effect of pressure on the band gap is manifested to oscillations and ShdH and dHvA effects in semiconductors.


1984 ◽  
Vol 106 (4) ◽  
pp. 184-186 ◽  
Author(s):  
S. Askenazy ◽  
P.R. Wallace ◽  
R.A. Stradling ◽  
J. Galibert ◽  
P. Perrier

Sign in / Sign up

Export Citation Format

Share Document