Entanglement dynamics of two atoms coupling to a quantum cavity

2020 ◽  
Vol 34 (09) ◽  
pp. 2050075
Author(s):  
Xiao San Ma ◽  
Mu-Tian Cheng

Recently, strong coupling dominating dissipative and decoherence effects between the atom and a quantum cavity has been investigated experimentally. In this paper, we study the entanglement dynamics of two two-level atoms coupling to a quantum cavity where each mirror is formed by a chain of atoms trapped near a one-dimensional waveguide. We consider the effects of both Markovian dynamics and non-Markovian dynamics on the entanglement evolution of the two central atoms. Our results show that the steady entanglement can be generated between the two central atoms whether the system is under the Markov regime or non-Markov regime when the number of atoms of the atomic mirrors is finite. When the number of the atomic mirrors is large enough, the entanglement of two central atoms takes oscillating behavior without a stable value. The effect of detuning and dissipation on entanglement dynamics is also discussed and the results imply that the detuning plays an important role in improving the entanglement amplitude.

Author(s):  
Dominic Vella ◽  
Emmanuel du Pontavice ◽  
Cameron L. Hall ◽  
Alain Goriely

Spherical neodymium–iron–boron magnets are permanent magnets that can be assembled into a variety of structures owing to their high magnetic strength. A one-dimensional chain of these magnets responds to mechanical loadings in a manner reminiscent of an elastic rod. We investigate the macroscopic mechanical properties of assemblies of ferromagnetic spheres by considering chains, rings and chiral cylinders of magnets. Based on energy estimates and simple experiments, we introduce an effective magnetic bending stiffness for a chain of magnets and show that, used in conjunction with classic results for elastic rods, it provides excellent estimates for the buckling and vibration dynamics of magnetic chains. We then use this estimate to understand the dynamic self-assembly of a cylinder from an initially straight chain of magnets.


2012 ◽  
Vol 26 (27) ◽  
pp. 1250178 ◽  
Author(s):  
JUN YAN

The phase structures of one-dimensional quantum sine-Gordon–Thirring model with N-impurities coupling are studied in this paper. The effective actions at finite temperature are derived by means of the perturbation and non-perturbation functional integrals method. The stability of coexistence phase is analyzed respectively in the weak and strong coupling case. It is shown that the coexistence phase is not stable when fermions have an attractive potential g < 0, and the stable coexistence phase can form when fermions have an exclude potential g > 0.


2008 ◽  
Vol 06 (01) ◽  
pp. 167-179
Author(s):  
CHUAN-JIA SHAN ◽  
WEI-WEN CHENG ◽  
TANG-KUN LIU ◽  
YAN-XIA HUANG ◽  
HONG LI ◽  
...  

Considering the dipole–dipole coupling intensity between two atoms and the field in the Fock state, the entanglement dynamics between two atoms that are initially entangled in the Tavis–Cummings model with intrinsic decoherence have been investigated. The two-atom entanglement appears with periodicity without considering intrinsic decoherence. However, the intrinsic decoherence causes the decay of entanglement between two atoms, with the decrease of the intrinsic decoherence coefficient, the entanglement will quickly become a constant value, which is affected by the two-atom initial state, the dipole–dipole coupling intensity and the field in the Fock state. Meanwhile, the two-atom quantum state will stay forever in the maximal entangled state when the initial state is proper, even in the presence of intrinsic decoherence. Furthermore, the two atoms can generate maximal entangled state even if they are initially separated by adjusting the dipole–dipole interaction, the strong coupling can improve the value of entanglement.


2019 ◽  
Vol 176 (2) ◽  
pp. 492-504
Author(s):  
Z. Saghafi ◽  
S. Mahdavifar ◽  
E. Hosseini Lapasar

2011 ◽  
Vol 322 ◽  
pp. 369-372
Author(s):  
Zhi Xiang Ji

A chain Ni (II) coordination polymer material was prepared and characterized by elemental analysis and single-crystal X-ray diffraction. It crystallizes in monoclinic, space group C2/c with a = 1.24348(13) nm, b = 1.29477(12) nm, c = 1.51480(17) nm and Dc = 1.401 g•cm-3. The results of structural analysis indicated that each Ni (II) ion forms six-coordinated with nitrogen atoms of pyridine and thiocyanate, and the Ni (II) coordination polymer material formed one dimensional chain structure by the interaction of pyridine rings.


We consider an electron moving in the field of a one-dimensional infinite chain of identical potentials separated by regions of zero potential, the lengths s of these regions being distributed according to a probability density function p(8) . If we define the reduced phase of a real solution of the wave equation as the principal value of arctan ( — ψ'/kψ ) and є i as the reduced phase at the point x i immediately to the left of the i th atomic potential, it is shown for all bounded p(s) and sufficiently high electron energies that the є i are distributed according to a probability density function which depends on the direction of integration from a specified homogeneous boundary condition. This result is shown to imply that the eigenfunctions for such systems are localized in the sense that the envelope of such a function decays on average in an exponential manner on either side of some region. An analytical calculation for a random chain of δ-functions gives the decay of the nodes explicitly for high energies, and numerical calculations of the decay for a liquid model are presented. Further support for the theory is provided by computer calculations of some of the eigenfunctions of a chain of 1000 randomly placed δ-functions.


2007 ◽  
Vol 63 (4) ◽  
pp. 621-632 ◽  
Author(s):  
Thomas Gelbrich ◽  
Michael B. Hursthouse ◽  
Terence L. Threlfall

One hundred 4,4′-disubstituted benzenesulfonamidobenzenes, X–C6H5–SO2–NH–C6H5–Y, where X, Y = NO2, CN, CF3, I, Br, Cl, F, H, Me, OMe, have been synthesized and their crystal structures determined. The resulting set of 133 structures, which includes polymorphic forms, is used to make a comparative study of the molecular packing and the nature of the intermolecular interactions, including the formation of hydrogen-bonding motifs and the influence of the two substituents X and Y on these features. Nine distinct supramolecular connectivity motifs of hydrogen bonding are encountered. There are 74% of all the structures investigated which exhibit one of two motifs based on N—H...O=S interactions, a dimer or a chain. There are three other, infrequent motifs, also employing N—H...O=S links, which exhibit more complexity. Four different chain motifs result from either N—H...O=N, N—H...C[triple-bond]N or N—H...OMe interactions, arising from the presence of a nitro (position Y), nitrile (X or Y) or methoxy (Y) substituent. The program XPac [Gelbrich & Hursthouse (2005). CrystEngComm, 7, 324–336] was used to systematically analyse the packing relationships between crystal structures. Similar discrete (zero-dimensional) and extended (one-dimensional and two-dimensional) structure components, as well as cases of isostructurality were identified. A hierarchy for the classification of the 56 distinct structure types of this set is presented. The most common type, a series of 22 isostructures containing the simple centrosymmetric N—H...O=S-bonded dimer, is discussed in detail.


2012 ◽  
Vol 85 (3) ◽  
Author(s):  
Simone Zanotto ◽  
Riccardo Degl'Innocenti ◽  
Lucia Sorba ◽  
Alessandro Tredicucci ◽  
Giorgio Biasiol

Sign in / Sign up

Export Citation Format

Share Document