The effect of oxygen pressure on the fretting wear of titanium alloys

2020 ◽  
Vol 34 (13) ◽  
pp. 2050128
Author(s):  
Xuejiao Wei ◽  
Liangliang Sheng ◽  
Hao Li ◽  
Xiaojun Xu ◽  
Jinfang Peng ◽  
...  

A systematic experimental investigation was conducted to study the effect of oxygen environment of different pressure on the fretting wear behavior of Ti6Al4V titanium alloy. In order to well probe the real tribo-chemical state, in this work, an in-situ X-ray photoelectron spectroscopy (XPS) analysis test developed by a self-designed high precision fretting wear tester integrated with an XPS equipment was used. The tribo-oxidation formed at the different oxygen pressure and its effect on the fretting wear mechanism and the resulting fretting wear volume in the different fretting run regime were discussed. Results show that the oxygen environment of different pressure has significant influence on the wear resistance of titanium alloy depending on the fretting run regime. In the partial slip regime (PSR), different oxygen pressure plays a little influence on fretting wear behavior, while a significant influence for the mixed fretting regime (MFR) and slip regime (SR). The tribo-oxidations produced at the oxygen environment of different pressure for the different fretting run regimes are found to correlate well with the resulting fretting wear mechanism and the fretting wear resistance.

Author(s):  
Liangliang Sheng ◽  
Xiangtao Deng ◽  
Hao Li ◽  
Yuxuan Ren ◽  
Guoqing Gou ◽  
...  

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum ([Formula: see text] Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mengjiao Wang ◽  
Yunxia Wang ◽  
Jianzhang Wang ◽  
Na Fan ◽  
Fengyuan Yan

Super duplex stainless steel (SDSS) has excellent mechanical properties and corrosion resistance. However, currently, there are few researches conducted on its fretting wear performance. This paper studies the influence of different heat treatment temperatures and medium environment on the fretting wear performance of SAF 2507 SDSS. Results show that the combined effect of the sigma phase and seawater lubrication can significantly improve the wear resistance of SAF 2507 SDSS. After treated with different heat treatment temperatures, different contents of sigma phases are precipitated out of SAF 2507 SDSS, which improves the wear resistance of the material to different degrees. In addition, the fretting wear performance of SAF 2507 SDSS also relates to the lubrication medium. In air, the friction and wear performance of SAF 2507 SDSS is poor, while in seawater, solution and corrosion products that acted as a lubricant dramatically improve the wear resistance of the material. Under the combined action of heat treatment and seawater lubrication medium, the friction coefficient and wear reduce by 70% and 91%, respectively.


Author(s):  
Dongbo Wei ◽  
Fengkun Li ◽  
Xiangfei Wei ◽  
Tomasz Liskiewicz ◽  
Krzysztof J Kubiak ◽  
...  

In this study, surface Cr-Nb alloying was realized on γ-TiAl using double glow plasma hollow cathode discharge technique. An inter-diffusion layer was generated under the surface, composed of Cr2Nb intermetallic compounds. After Cr-Nb alloying, the surface nanohardness of γ-TiAl increased from 5.65 to 11.61 GPa. The surface H/E and H3/E2 increased from 3.37 to 5.98 and from 0.64 to 4.15, respectively. Cr-Nb alloying and its effect on fretting wear were investigated. The surface treatment resulted in improved plastic deformation and fretting wear resistance of γ-TiAl. The fretting wear test showed that an average friction coefficient of γ-TiAl against Si3N4 ball was significantly decreased after Cr-Nb alloying. The fluctuation of friction coefficient during running-in stage was significantly improved. The friction behavior of both γ-TiAl before and after Cr-Nb alloying could be divided into distinctive stages including formation of debris, flaking, formation of crack, and delamination. It was observed that the high hardness, resistance to plastic deformation, and fatigue resistance of γ-TiAl after Cr-Nb alloying could inhibit the formation of debris and delamination during friction test. The fretting wear scar area and the maximum wear scar depth were decreased, indicating that the wear resistance of γ-TiAl has been greatly improved after Cr-Nb alloying. The results indicated that plasma surface Cr-Nb alloying is an effective way for improving the fretting wear resistance of γ-TiAl in aviation area.


Wear ◽  
2017 ◽  
Vol 376-377 ◽  
pp. 670-679 ◽  
Author(s):  
Yan Zhou ◽  
Ming-xue Shen ◽  
Zhen-bing Cai ◽  
Jin-fang Peng ◽  
Min-hao Zhu

2018 ◽  
Vol 125 ◽  
pp. 85-94 ◽  
Author(s):  
Amin Ma ◽  
Daoxin Liu ◽  
Changbin Tang ◽  
Xiaohua Zhang ◽  
Chengsong Liu

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2831 ◽  
Author(s):  
Alejandro Gonzalez-Pociño ◽  
Florentino Alvarez-Antolin ◽  
Juan Asensio-Lozano

Vanadis 10 steel is a powder metallurgy (PM) processed tool steel. It is a ledeburitic steel with 8% Cr and 10% V. By deliberately varying the process parameters related to the quenching, tempering, and nitriding of these steels, the aim of this study is to determine which of these parameters have a significant influence on its adhesive wear resistance. The research methodology employed was a Design of Experiments (DoE) with six factors and two levels for each factor. The tempering temperature, number of temperings, and carrying out of a thermochemical nitriding treatment were found to have a significant effect. To increase adhesive wear resistance, austenitization at 1100 °C with air cooling is recommended, followed by three temperings at 500 °C and a subsequent nitriding treatment. It should be noted that the quench cooling medium does not have a significant influence on wear resistance. Furthermore, (Fe,Cr)7C3 (M7C3 carbides) are transformed into carbonitrides during nitriding. However, (Fe,V)C (MC carbides) are not affected by this nitriding process.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 682
Author(s):  
Liang Sun ◽  
Wenyan Zhai ◽  
Hui Dong ◽  
Yiran Wang ◽  
Lin He

Cr3C2-Ni cermet is a kind of promising material especially for wear applications due to its excellent wear resistance. However, researches were mainly concentrated on the experiment condition of room temperature, besides high-temperature wear mechanism of the cermet would be utilized much potential applications and also lack of consideration. In present paper, the influence of Mo content on the high-temperature wear behavior of in-situ Cr3C2-20 wt. % Ni cermet was investigated systematically. The friction-wear experiment was carried out range from room temperature to 800 °C, while Al2O3 ceramic was set as the counterpart. According to experimental results, it is indicated that the coefficient of friction (COF) of friction pairs risen at the beginning of friction stage and then declined to constant, while the wear rate of Cr3C2-20 wt. % Ni cermet risen continuously along with temperature increased, which attributes to the converted wear mechanism generally from typical abrasive wear to severe oxidation and adhesive wear. Generally, the result of wear resistance was enhanced for 13.4% (at 400 °C) and 31.5% (at 800 °C) by adding 1 wt. % Mo. The in-situ newly formed (Cr, Mo)7C3 ceramic particle and the lubrication phase of MoO3 can effectively improve the wear resistance of Cr3C2-20 wt. % Ni cermet.


Author(s):  
Lanfeng Zhang ◽  
Shirong Ge ◽  
Hongtao Liu ◽  
Qingliang Wang ◽  
Liping Wang ◽  
...  

Wear ◽  
1997 ◽  
Vol 213 (1-2) ◽  
pp. 135-139 ◽  
Author(s):  
Z.D. Dai ◽  
S.C. Pan ◽  
M. Wang ◽  
S.R. Yang ◽  
X.S. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document