A minimal nonlinearity logarithmic potential: Kinks with super-exponential profiles

Author(s):  
Pradeep Kumar ◽  
Avinash Khare ◽  
Avadh Saxena

We study a [Formula: see text]-dimensional field theory based on the [Formula: see text] potential which represents minimal nonlinearity in the context of phase transitions. There are three degenerate minima at [Formula: see text] and [Formula: see text]. There are novel, asymmetric kink solutions of the form [Formula: see text] connecting the minima at [Formula: see text] and [Formula: see text]. The domains with [Formula: see text] repel the linear excitations, the waves (e.g., phonons). Topology restricts the domain sequences and therefore the ordering of the domain walls. Collisions between domain walls are rich for properties such as transmission of kinks and particle conversion, etc. For illustrative purposes we provide a comparison of these results with the [Formula: see text] model and its half-kink solution, which has an exponential tail in contrast to the super-exponential tail for the [Formula: see text] potential. Finally, we place the results in the context of other logarithmic models.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630010 ◽  
Author(s):  
Salvatore Capozziello ◽  
Orlando Luongo ◽  
Mariacristina Paolella

Several models of [Formula: see text] gravity have been proposed in order to address the dark side problem in cosmology. However, these models should be constrained also at ultraviolet scales in order to achieve some correct fundamental interpretation. Here, we analyze this possibility comparing quantum vacuum states in given [Formula: see text] cosmological backgrounds. Specifically, we compare the Bogolubov transformations associated to different vacuum states for some [Formula: see text] models. The procedure consists in fixing the [Formula: see text] free parameters by requiring that the Bogolubov coefficients can be correspondingly minimized to be in agreement with both high redshift observations and quantum field theory predictions. In such a way, the particle production is related to the value of the Hubble parameter and then to the given [Formula: see text] model. The approach is developed in both metric and Palatini formalism.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


Author(s):  
Hans Boysen

AbstractPowder patterns of samples resulting from ferroelastic phase transitions generally show typical line profiles: asymmetry into the direction of the position of the corresponding hypothetical high symmetry reflection and strongly anisotropic line broadening. An approximate model is presented that describes the characteristic distribution of individual line widths based on the variation of lattice spacings within the domain walls. The variation with temperature is governed by the competition of decreasing spontaneous strain and increasing wall widths and/or wall densities. It is argued that conventional Rietveld refinements can easily lead to erroneous results and a simplified method is proposed to approximate the actual line profiles via the introduction of a second phase with anisotropic strain broadening to take into account the scattering fom the domain walls.


2021 ◽  
Vol 1 ◽  

Using resurgence theory to describe phase transitions in quantum field theory shows that information on non-perturbative effects like phase transitions can be obtained from a perturbative series expansion.


Author(s):  
Jean Zinn-Justin

Some equilibrium properties in statistical quantum field theory (QFT), that is, relativistic QFT at finite temperature are reviewed. Study of QFT at finite temperature is motivated by cosmological problems, high energy heavy ion collisions, and speculations about possible phase transitions, also searched for in numerical simulations. In particular, the situation of finite temperature phase transitions, or the limit of high temperature (an ultra-relativistic limit where the temperature is much larger than the physical masses of particles) are discussed. The concept of dimensional reduction emerges, in many cases, statistical properties of finite-temperature QFT in (1, d − 1) dimensions can be described by an effective classical statistical field theory in (d − 1) dimensions. Dimensional reduction generalizes a property already observed in the non-relativistic example of the Bose gas, and indicates that quantum effects are less important at high temperature. The corresponding technical tools are a mode-expansion of fields in the Euclidean time variable, singling out the zero modes of boson fields, followed by a local expansion of the resulting (d − 1)-dimensional effective field theory (EFT). Additional physical intuition about QFT at finite temperature in (1, d−1) dimensions can be gained by considering it as a classical statistical field theory in d dimensions, with finite size in one dimension. This identification makes an analysis of finite temperature QFT in terms of the renormalization group (RG), and the theory of finite-size effects of the classical theory, possible. These ideas are illustrated with several simple examples, the φ4 field theory, the non-linear σ-model, the Gross–Neveu model and some gauge theories.


Sign in / Sign up

Export Citation Format

Share Document