Study vibrational and structural properties of Cu3SeTe by raman spectroscopy and XRD

Author(s):  
S. I. Ibrahimova ◽  
S. H. Jabarov ◽  
N. A. Aliyeva ◽  
Y. I. Aliyev

The compounds Cu3SeTe were synthesized, the crystal structure and atomic dynamics were studied. As a result of X-ray diffraction studies, it was determined that the crystal structure of this compound corresponds to the cubic symmetry of the space group P-43 m. The studies of atomic dynamics were carried out by the method of Raman spectroscopy in the frequency range [Formula: see text]–800 cm[Formula: see text]. It was found that the Raman modes obtained at frequencies [Formula: see text], 91.47, 119.83, 139.51, 208.18 and 266.41 cm[Formula: see text] correspond to vibrations of metal–chalcogen and chalcogen–chalcogen bonds.

Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


1985 ◽  
Vol 63 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
John F. Richardson ◽  
Ted S. Sorensen

The molecular structures of exo-7-methylbicyclo[3.3.1]nonan-3-one, 3, and the endo-7-methyl isomer, 4, have been determined using X-ray-diffraction techniques. Compound 3 crystallizes in the space group [Formula: see text] with a = 15.115(1), c = 7.677(2) Å, and Z = 8 while 4 crystallizes in the space group P21 with a = 6.446(1), b = 7.831(1), c = 8.414(2) Å, β = 94.42(2)°, and Z = 2. The structures were solved by direct methods and refined to final agreement factors of R = 0.041 and R = 0.034 for 3 and 4 respectively. Compound 3 exists in a chair–chair conformation and there is no significant flattening of the chair rings. However, in 4, the non-ketone ring is forced into a boat conformation. These results are significant in interpreting what conformations may be present in the related sp2-hybridized carbocations.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


1993 ◽  
Vol 48 (12) ◽  
pp. 1727-1731 ◽  
Author(s):  
A. Franken ◽  
W. Preetz ◽  
M. Rath ◽  
K.-F. Hesse

By electrochemical oxidation of [B6H6]2- in the presence of nitrite ions and the base DBU in dichloromethane solution mononitropentahydrohexaborate [B6H5(NO2)]2- ions are formed and can be isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of the K and Cs salt were determined from single crystal X-ray diffraction analyses. K2[B6H5(NO2)] is monoclinic, space group P21/m with a = 5.953(1), b = 8.059(4), c = 8.906(1) Å, β = 109.553(9)°; Cs2[B6H5(NO2)] is monoclinic, space group P21/a with a = 9.438(6), b = 9.644(7), c = 11.138(9) Å, β = 101.44(9)°. The B6 octahedron is compressed in the direction of the B—NO2 bond by about 5%, with bond lengths between 1.67 and 1.77 A.


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


2019 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Bilal Abu Sal

This work is devoted to generalize and analyze the previouse results of new photonic-crystalline nanomaterials based on synthetic opals and active dielectrics. Data were characterized by X-ray diffraction and Raman spectroscopy. Active dielectrics infiltrated into the pores of the opal from the melt. The phase structure composition of the infiltrated materials into the pores of the opal matrix were analyzed. The results of x-ray diffraction and Raman spectra allowed to establish the crystal state of active dielectrics in the pores of the opal. The Raman spectra of some opal-active dielectric nanocomposites revealed new bands and changes in band intensities compared to the spectra of single crystals of active dielectrics. Further more, differences in band intensities in the spectra were measured at different spots of the sample‘s surface were observed. The revealed changes were attributed to the formation of new crystalline phases due to the injected dielectrics in opal pores.


2002 ◽  
Vol 57 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Beatriz S. Parajón-Costaa ◽  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Eduardo E Castellano

The crystal structure of [Cu(sac)2(nic)2(H2O)] (sac = saccharinate anion; nic = nicotinamide) has been determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group C2/c with Z = 4 and the Cu(II) ion presents a CuN4O square pyramidal coordination. Some comparisons with related structures are made and the most important features of its IR spectrum were also discussed.


Sign in / Sign up

Export Citation Format

Share Document