scholarly journals INFORMATION GEOMETRY, INFERENCE METHODS AND CHAOTIC ENERGY LEVELS STATISTICS

2008 ◽  
Vol 22 (20) ◽  
pp. 1879-1892 ◽  
Author(s):  
CARLO CAFARO

In this letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.

2009 ◽  
Vol 87 (10) ◽  
pp. 1059-1064
Author(s):  
S. C. Joshi

By extending the study of dyonic harmonic oscillator and dyonium in the presence of an external magnetic field, the possibility of observation of dyons has been explored. The splitting in energy levels of dyonium under the influence of a weak magnetic field has been undertaken with inclusion of spin-orbit interaction, and it is observed that the energy level splits into nondegenerate as well doubly degenerate states. The effect of a strong magnetic field on dyonium has also been carried out by treating spin-orbit interaction as a perturbation, leading to interesting results.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3455-3458
Author(s):  
ANPING LIU ◽  
YINFENG WANG ◽  
XUEHENG YANG

The Zr -doped TiN coating, a nanometer (Ti, Zr)N thin film, has been deposited by reactive magnetron sputtering on slides and Al substrates. The crystalline phase and energy band structure have been analyzed by XRD and STS. The results of XRD show that the (Ti, Zr)N film is poly crystalline and consisted of mixed crystal of TiN and ZrN phase. The STS spectra show that Zr -doping didn't change the position and band-gap of energy level, only two new energy levels appeared, Eg = 0.33eV and Eg = 0.42eV. According to the results of measurement, (Ti, Zr)N has higher hardness and better corrosion resistance than TiN by Zr -doping.


2015 ◽  
Vol 799-800 ◽  
pp. 120-124 ◽  
Author(s):  
Mary Donnabelle L. Balela ◽  
Lalaine M. Dulin ◽  
Erica A. Garcia ◽  
M. Janelle H. Tica

Cobalt-nickel (Co-Ni) nanowires were formed by electroless deposition in ethylene glycol under external magnetic field. The effects of initial Co (II) and Ni (II) concentration on the surface and morphology of the synthesized nanowires were investigated by x-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. An increase in the Co (II) concentration resulted in increase in diameter of the nanowires. However, the length of nanowires was observed to decrease. Higher Co (II) concentration resulted in a mixture of hexagonal close-packed and face-centered cubic Co-Ni nanowires. X-ray diffraction revealed that crystal growth occurred when the nanowires are annealed at 653 K for 10h.


2006 ◽  
Vol 20 (32) ◽  
pp. 5417-5425
Author(s):  
HONG-YI FAN ◽  
TONG-TONG WANG ◽  
YAN-LI YANG

We show that the recently proposed invariant eigenoperator method can be successfully applied to solving energy levels of electron in an anisotropic quantum dot in the presence of a uniform magnetic field (UMF). The result reduces to the energy level of electron in isotropic harmonic oscillator potential and in UMF naturally. The Landau diamagnetism decreases due to the existence of the anisotropic harmonic potential.


Sign in / Sign up

Export Citation Format

Share Document