BINDING ENERGIES OF A NEGATIVE TRION IN A QUANTUM DOT

2008 ◽  
Vol 22 (24) ◽  
pp. 2421-2428
Author(s):  
WENFANG XIE

The binding energies of a negative trion confined in a quantum dot are calculated using the exact diagonalization method. Both the spin singlet and triplet states are considered. Our results show that the binding energies are sensitive to the strength of the confinement potential as well as the electron–hole mass ratio.

2000 ◽  
Vol 214-215 ◽  
pp. 832-836 ◽  
Author(s):  
O Homburg ◽  
P Michler ◽  
K Sebald ◽  
J Gutowski ◽  
H Wenisch ◽  
...  

2019 ◽  
Vol 33 (34) ◽  
pp. 1950422 ◽  
Author(s):  
Mohammad Elsaid ◽  
Mohamoud Ali ◽  
Ayham Shaer

We present a theoretical study to investigate the effect of donor impurity on the magnetization (M) and the magnetic susceptibility [Formula: see text] of single electron quantum dot (QD) with Gaussian confinement in the presence of a magnetic field. We solve the Hamiltonian of this system, including the spin, by using the exact diagonalization method. The ground state binding energy (BE) of an electron has been shown as a function of QD radius and confinement potential depth. The behaviors of the magnetization and the magnetic susceptibility of a QD have been studied as a function of temperature, confinement potential depth, quantum radius and magnetic field. We have shown the effect of donor impurity on the magnetization and magnetic susceptibility curves of Gaussian quantum dot (GQD).


2012 ◽  
Vol 86 (8) ◽  
Author(s):  
Tomohiro Otsuka ◽  
Yuuki Sugihara ◽  
Jun Yoneda ◽  
Shingo Katsumoto ◽  
Seigo Tarucha

1990 ◽  
Vol 05 (11) ◽  
pp. 887-890 ◽  
Author(s):  
HYUN KYU LEE ◽  
JOON HA KIM

The mass of H-dibaryon is estimated in an SU(3) Skyrme model using the exact diagonalization method. With the parameters determined from the best fit to the B = 1 baryon spectrum, the mass of H-dibaryon is obtained as 1818 MeV.


2020 ◽  
Author(s):  
Robert Pollice ◽  
Pascal Friederich ◽  
Cyrille Lavigne ◽  
Gabriel dos Passos Gomes ◽  
Alan Aspuru-Guzik

One of the recent proposals for the design of state-of-the-art emissive materials for organic light emitting diodes (OLEDs) is the principle of thermally activated delayed fluorescence (TADF). The underlying idea is to enable facile thermal upconversion of excited state triplets, which are generated upon electron-hole recombination, to excited state singlets by minimizing the corresponding energy difference resulting in devices with up to 100% internal quantum efficiencies (IQEs). Ideal emissive materials potentially surpassing TADF emitters should have both negative singlet-triplet gaps and appreciable fluorescence rates to maximize reverse intersystem crossing (rISC) rates from excited triplets to singlets while minimizing ISC rates and triplet state occupation leading to long-term operational stability. However, molecules with negative singlet-triplet gaps are extremely rare and, to the best of our knowledge, not emissive. In this work, based on computational studies, we describe the first molecules with negative singlet-triplet gaps and considerable fluorescence rates and show that they are more common than hypothesized previously.


2017 ◽  
Vol 9 (1) ◽  
pp. 77 ◽  
Author(s):  
Faten BZOUR ◽  
Mohammad K. ELSAID ◽  
Ayham SHAER

In this work, we present a theoretical study of the magnetic susceptibility (x of two-electron GaAs parabolic quantum dot (QD) under the combined effects of external pressure, temperature and magnetic field. We used the exact diagonalization method to obtain the eigenenergies by solving the two electron quantum dot Hamiltonian taking into account the dependence of the effective mass and dielectric constant on the hydrostatic pressure and temperature. The pressure and temperature show significant effects on the calculated QD spectra. Next, we investigate the behavior of the magnetization of a quantum dot as a function of external pressure, temperature, confining frequency and magnetic field. The singlet-triplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the magnetic susceptibility spectra have been shown. The comparison shows that our results are in very good agreement with the reported works.


Sign in / Sign up

Export Citation Format

Share Document