AHARONOV–BOHM EFFECT ON QUANTUM TRANSPORT IN SINGLE-WALLED CARBON NANOTUBE INTERFEROMETERS

2010 ◽  
Vol 24 (09) ◽  
pp. 849-857 ◽  
Author(s):  
MEI HAN ◽  
YONG ZHANG

The quantum conductance of the electron interferometers composed of the armchair and metallic zigzag single-walled carbon nanotubes (SWNTs) in an axial magnetic field lower than 100 T has been studied by using the tight-binding approximation and Landauer–Buttiker formula. Quantum conductance oscillation as a function of gate voltage due to Fabry–Perot like electron interference was found. The analytical expressions of the rapid and slow conductance oscillation periods for the armchair SWNTs have been derived. It is shown that they depend on the magnetic field, gate voltage, and tube length. For the case of the metallic zigzag SWNTs, except rapid conductance oscillation, slow conductance oscillation was also found, which should not exist without the axial magnetic field.

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Ana Cláudia C. de Paula ◽  
Gustavo A. M. Sáfar ◽  
Alfredo M. Góes ◽  
Marcelo P. Bemquerer ◽  
Marcos A. Ribeiro ◽  
...  

Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy.


Author(s):  
Taza Gul ◽  
Ramla Akbar ◽  
Zafar Zaheer ◽  
Iraj S Amiri

The mutual result of the magnetic field and Marangoni convection against the thin liquid film of Casson fluid, blood-based carbon nanotube nanofluid has been fruitfully discussed in this article. The influence of various model constraints is focused on velocity, heat transfer, pressure distribution, skin friction and Nusselt number through graphical illustration. In addition, we witness that the thermal field of liquid raises with the growing value of [Formula: see text] and this upsurge is more in single-walled carbon nanotubes and is more dominant than multi-walled carbon nanotubes. The controlling approach of the homotopy analysis method has been used for velocity and temperature distribution. For authentication, the achieved results have been associated with the numerical (ND-Solve) method and displayed. This investigation shows that the velocity profile in the case of Casson fluid single-walled carbon nanotube–blood nanofluid is comparatively less affected and the temperature field of single-walled carbon nanotube–blood nanofluid dominates multi-walled carbon nanotube–blood nanofluid.


2012 ◽  
Vol 535-537 ◽  
pp. 341-344 ◽  
Author(s):  
Hong Xia Wang ◽  
Zi Biao Song ◽  
Dai Zhi Liu

On the base of the electron energy band structure of graphene obtained by the tight-binding method, the quantized wave vector equation along the circumferential director of the spiral single-walled carbon nanotubes was established through coordinate transformation and periodic boundary condition, and an analytical expression of the electron energy band was derived. MATLAB is used to calculate the energy band curve of spiral single-walled carbon nanotubes with different structural parameters. The characteristic of the energy band curves was analyzed and discussed. The results shows that single-walled carbon nanotubes (n, m) can be identified as metallic with no band gap nearly which satisfies n-m=3q(q is integer), otherwise, the nanotubes is semiconducting and there are band gaps between conduction band and valence band. And the band gap is inversely proportional to diameter approximately for semiconducting tubes.


2004 ◽  
Vol 858 ◽  
Author(s):  
SungHo Jhang ◽  
SangWook Lee ◽  
DongSu Lee ◽  
Eleanor E. B. Campbell ◽  
Siegmar Roth ◽  
...  

ABSTRACTThe switching of resistance between two discrete values, known as random telegraph noise (RTN), was observed in individual single-walled carbon nanotubes (SWNTs). The RTN has been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the features of the RTN, we identify three different types of RTN existing in the SWNT related systems. While the RTN can be generated by the various charge traps in the vicinity of the SWNTs, the RTN for metallic SWNTs is mainly due to reversible defect motions between two metastable states, activated by inelastic scattering with electrons.


Sign in / Sign up

Export Citation Format

Share Document