scholarly journals CLASSICAL DIAMAGNETISM REVISITED

2010 ◽  
Vol 24 (30) ◽  
pp. 2899-2910 ◽  
Author(s):  
ARNAB SAHA ◽  
SOURABH LAHIRI ◽  
A. M. JAYANNAVAR

The well-known Bohr–van Leeuwen Theorem states that the orbital diamagnetism of classical charged particles is identically zero in equilibrium. However, results based on real space–time approach using the classical Langevin equation predicts non-zero diamagnetism for classical unbounded (finite or infinite) systems. Here we show that the recently discovered Fluctuation Theorems, namely, the Jarzynski Equality or the Crooks Fluctuation Theorem surprisingly predicts a free energy that depends on magnetic field as well as on the friction coefficient, in outright contradiction to the canonical equilibrium results. However, in the cases where the Langevin approach is consistent with the equilibrium results, the Fluctuation Theorems lead to results in conformity with equilibrium statistical mechanics. The latter is demonstrated analytically through a simple example that has been discussed recently.

1958 ◽  
Vol 6 ◽  
pp. 446-447
Author(s):  
Willard H. Bennett

A tube has been developed in which the shapes of streams of charged particles moving in the earth's magnetic field can be produced accurately to scale. The tube has been named the Störmertron in honor of Carl Störmer who calculated many such orbits. New developments which have made this tube possible include a method for coating the inside of large glass tubes with a transparent electrically conducting film, and an electron gun producing gas-focused streams in less than ½ micron of mercury vapor, a nearly vapor-free grease joint, and a nearly vapor-free carbon black. The magnetic dipole field of the earth is simulated with an Alnico magnet capped with properly shaped soft iron caps. The stream is deflected using two pairs of yoke coils near the gun.


2011 ◽  
Vol 25 (26) ◽  
pp. 3435-3442
Author(s):  
XIAOYAN YAO

Wang–Landau algorithm of Monte Carlo simulation is performed to understand the thermodynamic and magnetic properties of antiferromagnetic Ising model on honeycomb lattice. The internal energy, specific heat, free energy and entropy are calculated to present the thermodynamic behavior. For magnetic property, the magnetization and magnetic susceptibility are discussed at different temperature upon different magnetic field. The antiferromagnetic order is confirmed to be the ground state of the system, and it can be destroyed by a large magnetic field.


1993 ◽  
Vol 73 (5) ◽  
pp. 2364-2375 ◽  
Author(s):  
A. Ishibashi ◽  
D. G. Ravenhall ◽  
R. L. Schult ◽  
H. W. Wyld

Sign in / Sign up

Export Citation Format

Share Document