Unipolar memristive switching in bulk positive temperature coefficient ceramic thermistor

2016 ◽  
Vol 30 (04) ◽  
pp. 1650025 ◽  
Author(s):  
Hongya Wu ◽  
Caihui Wang ◽  
Hua Fu ◽  
Ji Zhou ◽  
Shuzhi Zheng

A memristive switching phenomena was investigated in macroscale bulk positive temperature coefficient (PTC) thermosensitive ceramics. (Ba[Formula: see text]Sr[Formula: see text])TiO3, which is a well-known PTC thermistor, was taken as an example to analyze the memristive behavior of those macroscale bulk ceramics. Hysteretic current–voltage (I–V) characteristics, which are the features of memristor were obtained. The origin of the effect is attributed to the PTC thermosensitive characteristic of the bulk ceramics, and a switching mechanism driven by competing field-driven heat generation and heat dissipation was proposed.

2017 ◽  
Vol 897 ◽  
pp. 665-668
Author(s):  
Matthaeus Albrecht ◽  
Andreas Huerner ◽  
Tobias Erlbacher ◽  
Anton J. Bauer ◽  
Lothar Frey

In this work, the feasibility of the Bipolar-Injection Field Effect-Transistor (BIFET) [5] in two different Dual Thyristor type circuits [4] for an application as solid-state circuit breaker (SSCB) is experimentally verified. The Dual Thyristor type circuits are assembled from discrete silicon JFETs and a silicon carbide BIFET and are electrically characterized at various temperatures. The current-voltage characteristic shows the expected regenerative self-triggered turn-off capability under over-currents and the option to control the turn-off current by a passive resistor network. The issue with the adverse positive temperature coefficient of the trigger-current can be solved by putting the SiC BIFET in a cascode arrangement with a silicon Dual Thyristor. In this configuration the SiC BIFET provides the high voltage blocking capability and the silicon Dual Thyristor with its negative temperature coefficient controls the trigger-current. Transient analyses of both circuits indicate fast switching times of less than 50 μs seconds. It is demonstrated for the first time, that the SiC BIFET, due to its normally-on behaviour, used in a Dual Thyristor type circuit is a promising concept for self-triggered fuses in high current and high voltage applications.


2002 ◽  
Vol 748 ◽  
Author(s):  
S. Saha ◽  
D. Y. Kaufman ◽  
S. K. Streiffer ◽  
R. A. Erck ◽  
O. Auciello

ABSTRACTThe leakage and dielectric properties of a thickness series (90–480 nm) of {100} fiber-textured MOCVD (Ba0.75Sr0.25)Ti1+yO3+z (BST) thin films on Pt/SiO2/Si were investigated. The temperature and voltage dependence of the permittivity were consistent with previous observations, where thinner films demonstrated a suppressed temperature and electric field response that transitioned to a more bulk-like response with increasing film thickness. The current-voltage characteristics showed two distinct regimes. At low fields the current displayed weak field dependence and a monotonic increase with increasing temperature. In contrast, positive temperature coefficient of resistance (PTCR) was observed in the high-field leakage current behavior. The PTCR behavior was more pronounced for thicker BST films. Factors contributing to the observed PTCR effect are outlined and contrasted with the description for bulk BaTiO3 ceramics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 904
Author(s):  
Han Na Choi ◽  
Seung Hyun Jee ◽  
Jaehwan Ko ◽  
Dong Joo Kim ◽  
Sun Hee Kim

A high-stretch positive temperature coefficient (PTC) surface heating textile (PTC-SHT) was fabricated using a composite of PTC powder and multiwall carbon nanotubes (MWCNTs). The PTC-SHT (heating area = 100 × 100 mm2) was produced by screen-printing the PTC-MWCNT composite paste onto a high-stretch textile with embroidered electrodes. Overall, the temperature increased to 56.1 °C with a power consumption of 5 W over 7 min. Subsequently, the surface temperature of the PTC-SHT remained constant despite the continued decrease in power consumption. This indicated that heating was accompanied by an increase in resistance of the PTC-SHT, which is typical of this process—i.e., heating to a constant temperature under a constant voltage over an extended period of time. In addition, 4.63 W power was required to heat the PTC-SHT surface from an external temperature of 5 to 45 °C in 10 min, after which stable low-temperature heat generation behavior was observed at a constant temperature of 50 °C, which was maintained over 40 min. In contrast, negative temperature coefficient (NTC) behavior has been observed in an NTC-SHT consisting of only MWCNTs, where a slow heating rate in the initial stage of power application and a continuous increase in surface temperature and power consumption were noted. The PTC-SHT consumed less power for heat generation than the NTC-SHT and exhibited rapid heating behavior in the initial stage of power application. The heat generation characteristics of the PTC-SHT were maintained at 95% after 100,000 cycles of 20% stretch–contraction testing, and the heating temperature remained uniformly distributed within ± 2 °C across the entire heating element. These findings demonstrated that an SHT with PTC characteristics is highly suitable for functional warm clothing applications that require low power consumption, rapid heating, stable warmth, and high durability.


Sign in / Sign up

Export Citation Format

Share Document