Effects of boron on the mechanical properties of the TiAl–Ti3Al alloy: A first-principles investigation

2017 ◽  
Vol 31 (02) ◽  
pp. 1750002
Author(s):  
Zhong-Zhu Li ◽  
Ye Wei ◽  
Hong-Bo Zhou ◽  
Guang-Hong Lu

Employing a first-principles method in combination with the empirical criterions, we have investigated the site preference of boron (B) and its effect on the mechanical properties of the binary-phase TiAl–Ti3Al alloy. It is found that B energetically prefers to occupy the Ti-rich octahedral interstitial site, because B is more favorable to bond with Ti in comparison with Al. The occupancy tendency of B in the TiAl–Ti3Al alloy is the TiAl/Ti3Al interface [Formula: see text] Ti3Al [Formula: see text] TiAl, thus B tends to segregate into the binary-phase interface in the TiAl–Ti3Al alloy. The charge density difference shows that B at the TiAl–Ti3Al interface will form strong B–Ti bonds and weak B–Al bonds, leading to the significant increasing of the cleavage energy [Formula: see text] and the unstable stacking fault energy [Formula: see text]. This indicates that the presence of B will strengthen the TiAl/Ti3Al interface, but block its mobility. Further, the ratio of [Formula: see text]/[Formula: see text] of the B-doped system is 4.63%, 8.19% lower than that of the clean system. Based on the empirical criterions, B will have a negative effect on the ductility of the TiAl–Ti3Al alloy.

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2749-2755 ◽  
Author(s):  
YE WEI ◽  
YING ZHANG ◽  
GUANG-HONG LU ◽  
HUIBIN XU

We employed a first-principles method based on the density functional theory to investigate the effect of impurity O on the site preference and elastic properties of α2- Ti 3 Al . We found that the O atom prefers to occupy the Ti -rich octahedral interstitial site in α2- Ti 3 Al . We calculated the elastic constants of α2- Ti 3 Al with single O atom, which demonstrate that the O presence has no large effect on α2- Ti 3 Al according to the empirical criterions. Other factors such as O cluster should be taken into account to understand the deleterious effect of O on α2- Ti 3 Al . Our results provide a useful reference to further study the mechanical properties of TiAl alloys.


1993 ◽  
Vol 319 ◽  
Author(s):  
N. Kioussis ◽  
H. Watanabe ◽  
R.G. Hemker ◽  
W. Gourdin ◽  
A. Gonis ◽  
...  

AbstractUsing first-principles electronic structure calculations based on the Linear-Muffin-Tin Orbital (LMTO) method, we have investigated the effects of interstitial boron and hydrogen on the electronic structure of the L12 ordered intermetallic Ni3A1. When it occupies an octahedral interstitial site entirely coordinated by six Ni atoms, we find that boron enhances the charge distribution found in the strongly-bound “pure” Ni3AI crystal: Charge is depleted at Ni and Al sites and enhanced in interstitial region. Substitution of Al atoms for two of the Ni atoms coordinating the boron, however, reduces the interstitial charge density between certain atomic planes. In contrast to boron, hydrogen appears to deplete the interstitial charge, even when fully coordinated by Ni atoms. We suggest that these results are broadly consistent with the notion of boron as a cohesion enhancer and hydrogen as an embrittler.


2018 ◽  
Vol 8 (12) ◽  
pp. 2466 ◽  
Author(s):  
Yang Wu ◽  
Zhongmin Wang ◽  
Dianhui Wang ◽  
Jiayao Qin ◽  
Zhenzhen Wan ◽  
...  

To investigate Mo doping effects on the hydrogen permeation performance of Nb membranes, we study the most likely process of atomic hydrogen adsorption and diffusion on/into Mo-doped Nb (100) surface/subsurface (in the Nb12Mo4 case) via first-principles calculations. Our results reveal that the (100) surface is the most stable Mo-doped Nb surface with the smallest surface energy (2.75 J/m2). Hollow sites (HSs) in the Mo-doped Nb (100) surface are H-adsorption-favorable mainly due to their large adsorption energy (−4.27 eV), and the H-diffusion path should preferentially be HS→TIS (tetrahedral interstitial site) over HS→OIS (octahedral interstitial site) because of the correspondingly lower H-diffusion energy barrier. With respect to a pure Nb (100) surface, the Mo-doped Nb (100) surface has a smaller energy barrier along the HS→TIS pathway (0.31 eV).


2008 ◽  
Vol 1125 ◽  
Author(s):  
Ken-ichi Ebihara ◽  
Masatake Yamaguchi ◽  
Hideo Kaburaki ◽  
Yutaka Nishiyama

ABSTRACTWe have evaluated phosphorus (P) segregation in ion-irradiated nickel (Ni) by the rate theory model incorporating the results of first principles calculations. We find from our first principles calculation that the transport of P via the rotation mode of a mixed-dumbbell is unlikely to occur, and the transport coefficient of phosphorus by the vacancy mechanism is much larger than that reported previously. On the basis of our first principles results, we have also proposed to include the effect of free migration of P via the octahedral interstitial site of FCC Ni crystal in the rate theory model. With all these renewed parameters, we have successfully obtained the P distribution in irradiated Ni, which is very close to experiment, by adjusting the effect of P transport by the vacancy mechanism.


Author(s):  
Qiang Zhao ◽  
Zheng Zhang ◽  
Yang Li ◽  
Xiaoping Ouyang

Uranium dioxide (UO2) is the typical fuel that is used in nuclear fission reactor, fission gas are produced during and after the reactor operation, and the fission gas have a significant impact on the performance of UO2 in reactor. In this paper, we investigated the effects of the fission gas on the performance of UO2 by using the first-principles calculation method based on the density functional theory. The results are that, the volume of UO2 increased when there is a fission gas atom enter in UO2 supercell; fission gas prefer to occupy the octahedral interstitial site over the uranium vacancy site and the oxygen vacancy site, and the oxygen vacancy site is the most difficult occupied site due to the formation of an oxygen vacancy is more difficult than that of the uranium vacancy; our results of the UO2 elastic constants are in good agreement with other simulation results and experimental data, and the fission gas atoms make the ductility of UO2 decreased. Our works may shed some light on the development of the UO2 fuel and the spent fuel reprocessing.


2021 ◽  
Author(s):  
Jiayao Qin ◽  
Zhigao Liu ◽  
Wei Zhao ◽  
Dianhui Wang ◽  
Yanli Zhang ◽  
...  

Abstract Hydrogen embrittlement causes deterioration of materials used in hydrogen energy systems. Alloying is an effective means for overcoming this issue. In this study, the first-principles calculation method was used to investigate the effects of alloying Ni on the stability, dissolution, trapping, and diffusion behaviour of interstitial/vacancy H atoms in V. The calculated phonon spectra and solution energies of the vacancy/interstitial H atoms revealed that the V–Ni phase was dynamically and thermodynamically stable, and Ni addition could reduce the stability of V hydrides and improve their resistance to H embrittlement. H atoms in the interstitials and vacancies preferentially occupied the tetrahedral interstitial site (TIS) and octahedral interstitial site (OIS) with the lowest solution energies and diffused along the TIS → TIS and OIS → OIS paths with the minimum diffusion barrier energies. The trapping energy of the vacancy H atoms indicated that the addition of Ni could reduce the H trapping capability of the vacancies and suppress the retention of H in V. Detailed analysis of the calculated H diffusion barriers indicated that the presence of monovacancy defects blocked the diffusion of H atoms more than the presence of interstitials, and Ni doping did not enhance the H diffusion coefficient.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850184
Author(s):  
Haibo Wang ◽  
Xiaolan Song ◽  
Yue Xu ◽  
Zhenhua Yang

Intercalation mechanism of Li into cubic Co4N4 has been investigated by the first-principles calculations. Lattice constants, ratio of volume expansion, and formation energies of Li[Formula: see text]Co4N4 (x = 0, 1, 2, 3, 4) were calculated. Results indicate that Li prefers to fill the octahedral interstitial site [Formula: see text] rather than the tetrahedral interstitial site [Formula: see text]. With the increase in intercalation Li, the ratio of volume expansion increases from 8.29% (x = 1) to 31.58% (x = 4). Ternary phase Li4Co4N4 has the most stability with the negative intercalation energy, and the corresponding theoretical specific capacity reaches 367 mA/g. Furthermore, the analysis of density of states, valence electron density distribution maps, and electron localization function (ELF) of Co4N4 and Li4Co4N4 indicates that Li intercalation enhances the electrical conductivity of Co4N4 and weakens the bonding of Co and N. Finally, Li-ion migration dynamics in the Co4N4 bulk were investigated with nudged elastic band (NEB) methods. Results show that the migration path of Li-ion is along [Formula: see text] with the energy barrier of 0.44 eV.


Sign in / Sign up

Export Citation Format

Share Document