Rate Theory Modeling of Irradiation-induced Phosphorus Segregation in FCC nickel Using First Principles Calculations

2008 ◽  
Vol 1125 ◽  
Author(s):  
Ken-ichi Ebihara ◽  
Masatake Yamaguchi ◽  
Hideo Kaburaki ◽  
Yutaka Nishiyama

ABSTRACTWe have evaluated phosphorus (P) segregation in ion-irradiated nickel (Ni) by the rate theory model incorporating the results of first principles calculations. We find from our first principles calculation that the transport of P via the rotation mode of a mixed-dumbbell is unlikely to occur, and the transport coefficient of phosphorus by the vacancy mechanism is much larger than that reported previously. On the basis of our first principles results, we have also proposed to include the effect of free migration of P via the octahedral interstitial site of FCC Ni crystal in the rate theory model. With all these renewed parameters, we have successfully obtained the P distribution in irradiated Ni, which is very close to experiment, by adjusting the effect of P transport by the vacancy mechanism.

Author(s):  
Ken-ichi Ebihara ◽  
Masatake Yamaguchi ◽  
Yutaka Nishiyama ◽  
Kunio Onizawa ◽  
Hiroshi Matsuzawa

The experimental results on neutron-irradiated reactor pressure vessel (RPV) steels have revealed grain boundary segregation of phosphorous (P) due to neutron irradiation, which may lead to intergranular fracture. Because of the lack of experimental database, however, the dependence of the segregation on variables such as dose, dose-rate, and temperature is not clear. Here, we incorporate the parameters determined by first-principles calculations into the rate theory model which was developed for bcc lattice on the basis of the fcc lattice model proposed by Murphy and Perks [1], and apply it to the simulation of irradiation-induced P segregation in bcc iron. We evaluate the grain boundary P coverage and discuss its dependence on dose-rate and irradiation temperature by comparing our results with previously reported results and experimental data. As results, we find that dose-rate does not affect the grain boundary P coverage within the range of our simulation condition and that the dependence on irradiation temperature differs remarkably from the previous results.


Author(s):  
Qiang Zhao ◽  
Zheng Zhang ◽  
Yang Li ◽  
Xiaoping Ouyang

Uranium dioxide (UO2) is the typical fuel that is used in nuclear fission reactor, fission gas are produced during and after the reactor operation, and the fission gas have a significant impact on the performance of UO2 in reactor. In this paper, we investigated the effects of the fission gas on the performance of UO2 by using the first-principles calculation method based on the density functional theory. The results are that, the volume of UO2 increased when there is a fission gas atom enter in UO2 supercell; fission gas prefer to occupy the octahedral interstitial site over the uranium vacancy site and the oxygen vacancy site, and the oxygen vacancy site is the most difficult occupied site due to the formation of an oxygen vacancy is more difficult than that of the uranium vacancy; our results of the UO2 elastic constants are in good agreement with other simulation results and experimental data, and the fission gas atoms make the ductility of UO2 decreased. Our works may shed some light on the development of the UO2 fuel and the spent fuel reprocessing.


2021 ◽  
Author(s):  
Jiayao Qin ◽  
Zhigao Liu ◽  
Wei Zhao ◽  
Dianhui Wang ◽  
Yanli Zhang ◽  
...  

Abstract Hydrogen embrittlement causes deterioration of materials used in hydrogen energy systems. Alloying is an effective means for overcoming this issue. In this study, the first-principles calculation method was used to investigate the effects of alloying Ni on the stability, dissolution, trapping, and diffusion behaviour of interstitial/vacancy H atoms in V. The calculated phonon spectra and solution energies of the vacancy/interstitial H atoms revealed that the V–Ni phase was dynamically and thermodynamically stable, and Ni addition could reduce the stability of V hydrides and improve their resistance to H embrittlement. H atoms in the interstitials and vacancies preferentially occupied the tetrahedral interstitial site (TIS) and octahedral interstitial site (OIS) with the lowest solution energies and diffused along the TIS → TIS and OIS → OIS paths with the minimum diffusion barrier energies. The trapping energy of the vacancy H atoms indicated that the addition of Ni could reduce the H trapping capability of the vacancies and suppress the retention of H in V. Detailed analysis of the calculated H diffusion barriers indicated that the presence of monovacancy defects blocked the diffusion of H atoms more than the presence of interstitials, and Ni doping did not enhance the H diffusion coefficient.


1993 ◽  
Vol 319 ◽  
Author(s):  
N. Kioussis ◽  
H. Watanabe ◽  
R.G. Hemker ◽  
W. Gourdin ◽  
A. Gonis ◽  
...  

AbstractUsing first-principles electronic structure calculations based on the Linear-Muffin-Tin Orbital (LMTO) method, we have investigated the effects of interstitial boron and hydrogen on the electronic structure of the L12 ordered intermetallic Ni3A1. When it occupies an octahedral interstitial site entirely coordinated by six Ni atoms, we find that boron enhances the charge distribution found in the strongly-bound “pure” Ni3AI crystal: Charge is depleted at Ni and Al sites and enhanced in interstitial region. Substitution of Al atoms for two of the Ni atoms coordinating the boron, however, reduces the interstitial charge density between certain atomic planes. In contrast to boron, hydrogen appears to deplete the interstitial charge, even when fully coordinated by Ni atoms. We suggest that these results are broadly consistent with the notion of boron as a cohesion enhancer and hydrogen as an embrittler.


2018 ◽  
Vol 8 (12) ◽  
pp. 2466 ◽  
Author(s):  
Yang Wu ◽  
Zhongmin Wang ◽  
Dianhui Wang ◽  
Jiayao Qin ◽  
Zhenzhen Wan ◽  
...  

To investigate Mo doping effects on the hydrogen permeation performance of Nb membranes, we study the most likely process of atomic hydrogen adsorption and diffusion on/into Mo-doped Nb (100) surface/subsurface (in the Nb12Mo4 case) via first-principles calculations. Our results reveal that the (100) surface is the most stable Mo-doped Nb surface with the smallest surface energy (2.75 J/m2). Hollow sites (HSs) in the Mo-doped Nb (100) surface are H-adsorption-favorable mainly due to their large adsorption energy (−4.27 eV), and the H-diffusion path should preferentially be HS→TIS (tetrahedral interstitial site) over HS→OIS (octahedral interstitial site) because of the correspondingly lower H-diffusion energy barrier. With respect to a pure Nb (100) surface, the Mo-doped Nb (100) surface has a smaller energy barrier along the HS→TIS pathway (0.31 eV).


2019 ◽  
Vol 33 (18) ◽  
pp. 1950193
Author(s):  
Yingjiao Zhou ◽  
Qun Wei ◽  
Bing Wei ◽  
Ruike Yang ◽  
Ke Cheng ◽  
...  

The elastic constants and phonon dispersion of metallic C[Formula: see text] are calculated by first-principles calculations. The results show that the metallic C[Formula: see text] is mechanically and dynamically stable under high pressure. The variations of G/B ratio, Poisson’s ratio, elastic anisotropy, acoustic velocity and Debye temperature at the pressure range from 0 GPa to 100 GPa are analyzed. The results reveal that by adjusting the pressures the elastic anisotropy and thermodynamic properties could be improved for better applicability.


2017 ◽  
Vol 31 (02) ◽  
pp. 1750002
Author(s):  
Zhong-Zhu Li ◽  
Ye Wei ◽  
Hong-Bo Zhou ◽  
Guang-Hong Lu

Employing a first-principles method in combination with the empirical criterions, we have investigated the site preference of boron (B) and its effect on the mechanical properties of the binary-phase TiAl–Ti3Al alloy. It is found that B energetically prefers to occupy the Ti-rich octahedral interstitial site, because B is more favorable to bond with Ti in comparison with Al. The occupancy tendency of B in the TiAl–Ti3Al alloy is the TiAl/Ti3Al interface [Formula: see text] Ti3Al [Formula: see text] TiAl, thus B tends to segregate into the binary-phase interface in the TiAl–Ti3Al alloy. The charge density difference shows that B at the TiAl–Ti3Al interface will form strong B–Ti bonds and weak B–Al bonds, leading to the significant increasing of the cleavage energy [Formula: see text] and the unstable stacking fault energy [Formula: see text]. This indicates that the presence of B will strengthen the TiAl/Ti3Al interface, but block its mobility. Further, the ratio of [Formula: see text]/[Formula: see text] of the B-doped system is 4.63%, 8.19% lower than that of the clean system. Based on the empirical criterions, B will have a negative effect on the ductility of the TiAl–Ti3Al alloy.


2012 ◽  
Vol 602-604 ◽  
pp. 870-873 ◽  
Author(s):  
Wei Zhao ◽  
Qing Yuan Meng

The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles calculations. The results demonstrated that, in comparison to the adsorption of a CH4molecule on the pristine graphene sheet, a relatively stronger adsorption was observed between the CH4molecule and Al-doped graphene with a shorter adsorption distance, larger binding energy and more charge-transfer from the graphene surface to the CH4molecule. Therefore, the Al-doped graphene can be expected to be a novel sensor for the detection of CH4molecules in future applications.


Sign in / Sign up

Export Citation Format

Share Document