Investigations on sensing of picric acid in aqueous medium via fluorescence quenching of quinine sulfate

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040040
Author(s):  
Prashant A. Kulkarni ◽  
Mahendra A. More ◽  
Vinod Nandre ◽  
Anupa Kumbhar

This research describes systematic investigations on sensing of high explosives such as picric acid (PA), RDX, NTO, and trinitrotoluene (TNT) in aqueous medium via fluorescence quenching of quinine sulfate (QS). Although all the explosives exhibit fluorescence quenching of QS, highest response is observed for PA. Fluorescence quenching of [Formula: see text][Formula: see text]50% (in contrast to pristine QS) at [Formula: see text][Formula: see text]390 nm is observed for 10 nm (2.29 [Formula: see text]g of PA dissolved in 20 [Formula: see text]l of distilled water). The analysis of the Stern–Volmer (SV) plot implies dominance of static quenching mechanism in comparison to dynamic quenching mechanism. Furthermore, the effect of operational temperature on fluoresce quenching response for PA has been investigated, and values of enthalpy, entropy, and Gibbs free energy of interaction at various temperatures are estimated. The temperature-dependent studies reveal that fluorescence quenching is due to formation of strong hydrogen bonds, complemented by computational analysis.

2016 ◽  
Vol 1 (8) ◽  
pp. 1756-1762 ◽  
Author(s):  
Sunita Joshi ◽  
Santosh Kumari ◽  
Eduardo Chamorro ◽  
Debi D. Pant ◽  
Rajeev Sakhuja

1975 ◽  
Vol 30 (10) ◽  
pp. 1311-1314 ◽  
Author(s):  
H. Dreeskamp ◽  
E. Koch ◽  
M. Zander

Abstract Fluorescence quenching of 22 polycyclic aromatic hydrocarbons by nitromethane in toluene and acetonitrile solutions has been studied. Contrary to Sawicki’s observations that the fluorescence of hydrocarbons with the fluoranthene skeleton is not quenched that of 11.12-and 3.4-benzofluor-anthene and fluoranthene itself is quenched. These compounds have a high energy of the fluorescence transition. The fluorescence quenching of the compounds investigated follows a dynamic quenching mechanism. The bimolecular rate constant of fluorescence quenching increases exponentially with the energy of the fluorescing state of alternant hydrocarbons.


1997 ◽  
Vol 51 (3) ◽  
pp. 380-386 ◽  
Author(s):  
Juan H. Ayala ◽  
Ana M. Afonso ◽  
Venerando González

Molecules of polycyclic hydrocarbons (PAHs) that contain between two and five rings undergo quenching processes in the presence of cetylpyridinium bromide (CPB), which can act as quencher and as surfactant. The CPB concentration and the nature of the PAHs notably influence the inhibition mechanisms of fluorescence. Dynamic quenching is predominant for all hydrocarbons in solutions in which CPB is found in the form of monomers. When the quencher forms premicellar aggregates, fluoranthene, benzo[ a]pyrene, and benz[ a]anthracene undergo dynamic quenching, while for the remaining PAHs the dynamic and static processes coexist. In micellar CPB solutions the static quenching mechanism is predominant. The correlations existing between the quenching constant in the premicellar zone and topological and geometrical descriptors of the PAHs show the different behavior of alternant and nonalternant hydrocarbons.


1987 ◽  
Vol 52 (7) ◽  
pp. 1658-1665
Author(s):  
Viktor Řehák ◽  
Jana Boledovičová

Disodium 1,5- and 1,8-anthracenedisulphonate (ADS) and 9-acetylanthracene form coloured CT complexes with methylviologen (MV2+) in aqueous and micellar media. The complex formation constants and molar absorptivities were determined by the Benesi-Hildebrandt method. In the fluorescence quenching, its static component plays the major role. The dynamic quenching component is determined by the rate constant of electron transfer from the S1 state of ADS to MV2+.


2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 523 ◽  
Author(s):  
Simonas Ramanavičius ◽  
Milda Petrulevičienė ◽  
Jurga Juodkazytė ◽  
Asta Grigucevičienė ◽  
Arūnas Ramanavičius

In this research, the investigation of sensing properties of non-stoichiometric WO3 (WO3−x) film towards some volatile organic compounds (VOC) (namely: Methanol, ethanol, isopropanol, acetone) and ammonia gas are reported. Sensors were tested at several temperatures within the interval ranging from a relatively low temperature of 60 up to 270 °C. Significant variation of selectivity, which depended on the operational temperature of sensor, was observed. Here, the reported WO3/WO3–x-based sensing material opens an avenue for the design of sensors with temperature-dependent sensitivity, which can be applied in the design of new gas- and/or VOC-sensing systems that are dedicated for the determination of particular gas- and/or VOC-based analyte concentration in the mixture of different gases and/or VOCs, using multivariate analysis of variance (MANOVA).


Sign in / Sign up

Export Citation Format

Share Document