Spontaneous motion of droplet in tubes: The effects of surface wettability and segment length

2021 ◽  
pp. 2150358
Author(s):  
Dingni Zhang ◽  
Qianqian Shangguan

This work studies the spontaneous droplet flow in tubes with different wettability gradient and number of segments by using a particle-based numerical method, many-body dissipative particle dynamics (MDPD). The study aims to understand how the different contact angle sets (gradient contact angle distribution along with different segments of a tube) and the number of segments could affect the droplet flow velocity and time to reaching a stable state. Simulation results show that even with the same wettability gap, a contact angle set with higher values of contact angle along the tube segments can drive the droplet to flow faster in the tubes; moreover, with the same contact angle set and tube length, the tubes with fewer segments can allow a faster flow of droplet, thus a shorter time to reaching the stable state. The numerical findings in this work can provide a new idea and direction for the design of droplet-based microfluidic systems.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chenyang Wang ◽  
Xiao Wu ◽  
Pengfei Hao ◽  
Feng He ◽  
Xiwen Zhang

AbstractDroplets icing has important applications in real life. The icing process of droplets on microstructure is explored based on the MDPDE method in this study. Firstly, the correctness of the heat transfer model was verified by one-dimensional heat conduction simulation, and then the feasibility of the phase change model was verified by investigating the icing process of droplets. The influence of cold surface temperature, droplet volume and contact angle on freezing time of droplets was discussed, and it was found that the temperature of cold surfaces had a greater effect on freezing. We finally explored the influence of different microstructure surfaces on the icing of droplets, and results showed that the presence of microstructures greatly enhanced the anti-icing effect of the surface. In our research, the contact angle is a relatively large factor affecting the icing of droplets. In addition, it was discovered that the droplet had the strongest ability to delay freezing on the surface of triangle microstructures with a contact angle of 157.1°.


2019 ◽  
Author(s):  
Ting Liu ◽  
Anupam Mishra ◽  
Mohsen Torabi ◽  
Ahmed A. Hemeda ◽  
James Palko ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 072001
Author(s):  
Liuzhen Ren ◽  
Haibao Hu ◽  
Luyao Bao ◽  
Mengzhuo Zhang ◽  
Jun Wen ◽  
...  

Langmuir ◽  
2011 ◽  
Vol 28 (2) ◽  
pp. 1330-1336 ◽  
Author(s):  
Chen Chen ◽  
Lin Zhuang ◽  
Xuefeng Li ◽  
Jinfeng Dong ◽  
Juntao Lu

Langmuir ◽  
2010 ◽  
Vol 26 (12) ◽  
pp. 9533-9538 ◽  
Author(s):  
Chen Chen ◽  
Chunning Gao ◽  
Lin Zhuang ◽  
Xuefeng Li ◽  
Pingcang Wu ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (31) ◽  
pp. 2237-2245
Author(s):  
Myles Thomas ◽  
Elizabeth Krenek ◽  
Stephen Beaudoin

ABSTRACTUnderstanding particle adhesion is vital to any industry where particulate systems are involved. There are multiple factors that affect the strength of the adhesion force, including the physical properties of the interacting materials and the system conditions. Surface roughness on the particles and the surfaces to which they adhere, including roughness at the nanoscale, is critically important to the adhesion force. The focus of this work is on the capillary force that dominates the adhesion whenever condensed moisture is present. Theoretical capillary forces were calculated for smooth particles adhered to smooth and rough surfaces. Simulations of the classical centrifuge technique used to describe particle adhesion to surfaces were performed based on these forces. A model was developed to describe the adhesion of the particles to the rough surface in terms of the adhesion to a smooth surface and an ‘effective’ contact angle distribution.


2020 ◽  
Vol 34 (30) ◽  
pp. 2050331
Author(s):  
Nan Zhou ◽  
Jiayi Zhao ◽  
Shuo Chen ◽  
Yang Liu ◽  
Kaixuan Zhang

The transfer of the liquid from groove to plate is significantly affected by the breakup process of liquid bridge, which is the core problem of gravure. In this paper, many-body dissipative particle dynamics method (MDPD) is used to simulate the behaviors of the stretching liquid cylinder between the plate and the groove, and the influence of surface wettability, stretching velocity and groove structure on the liquid cylinder rupture and the transfer rate of liquid are studied. The results show that both of the slipping velocity of the contact line on the plate and the thinning velocity of the liquid cylinder determine the breakup state of the liquid bridges and the liquid transfer rate from the groove to the plate. In the cases with the same surface wettability, at high hydrophilicity surface, the transfer rate increases firstly and then decreases with the increase of the stretching velocity. In the cases with different surface wettability of the plate and the groove, reducing the stretching velocity and the inclination angle of the groove are helpful to pull the liquid out of the groove and increase the transfer rate, and it could also be achieved by increasing the wettability of the plate and decreasing the wettability of the groove. This study provides some new insights into the effects of surface wettability, stretching velocity and groove structure on the dynamics of breakup process and liquid transfer in stretching.


Sign in / Sign up

Export Citation Format

Share Document