scholarly journals LANDAU LEVEL GAP REDUCTION AT ABRUPT EDGES

1994 ◽  
Vol 08 (19) ◽  
pp. 1185-1193 ◽  
Author(s):  
I. BARTOŠ ◽  
B. ROSENSTEIN

For an electron localized near a finite rectangular step potential under strong magnetic field we found a profound local reduction of the gap between neighboring Landau levels.1,2 We investigate under what conditions the effect persists when the barrier gets smoother. The conclusion is that to get a substantial gap reduction the barrier gradient has to be larger than ħw c /a L (a L is the magnetic length). The sensitivity of the gap reduction is illustrated using tilted and multiple step barriers and finite stripe configurations.

2002 ◽  
Vol 17 (04) ◽  
pp. 231-235 ◽  
Author(s):  
A. V. KUZNETSOV ◽  
N. V. MIKHEEV ◽  
M. V. OSIPOV

The electron mass operator in a strong magnetic field is calculated by summation of the leading log contributions in all orders of the perturbation theory. An influence of the strong field on the virtual photon polarization operator is taken into account. The contribution of higher Landau levels of virtual electrons, along with the ground Landau level, is shown to be essential in the leading log approximation.


2020 ◽  
Vol 65 (3) ◽  
pp. 187
Author(s):  
M. Diachenko ◽  
O. Novak ◽  
R. Kholodov ◽  
A. Fomina

The process of the e−e+ pair photoproduction in a strong magnetic field through the polarization cascade (the creation of an e−e+ pair from a single photon and its subsequent annihilation to a single photon) has been considered. The kinematics of the process is analyzed, and the expression for the general amplitude is obtained. A radiation correction to the process of pair creation at the lowest Landau levels by a single photon is found in the case where the energy of this photon is close to the threshold value. A comparison with the process of e−e+ pair production by one photon is made.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
He-Xia Zhang ◽  
Jin-Wen Kang ◽  
Ben-Wei Zhang

AbstractThe Seebeck effect and the Nernst effect, which reflect the appearance of electric fields along x-axis and along y-axis ($$E_{x}$$ E x and $$E_{y}$$ E y ), respectively, induced by the thermal gradient along x-axis, are studied in the QGP at an external magnetic field along z-axis. We calculate the associated Seebeck coefficient ($$S_{xx}$$ S xx ) and Nernst signal (N) using the relativistic Boltzmann equation under the relaxation time approximation. In an isotropic QGP, the influences of magnetic field (B) and quark chemical potential ($$\mu _{q}$$ μ q ) on these thermoelectric transport coefficients are investigated. In the presence (absence) of weak magnetic field, we find $$S_{xx}$$ S xx for a fixed $$\mu _{q}$$ μ q is negative (positive) in sign, indicating that the dominant carriers for converting heat gradient to electric field are negatively (positively) charged quarks. The absolute value of $$S_{xx}$$ S xx decreases with increasing temperature. Unlike $$S_{xx}$$ S xx , the sign of N is independent of charge carrier type, and its thermal behavior displays a peak structure. In the presence of strong magnetic field, due to the Landau quantization of transverse motion of (anti-)quarks perpendicular to magnetic field, only the longitudinal Seebeck coefficient ($$S_{zz}$$ S zz ) exists. Our results show that the value of $$S_{zz}$$ S zz at a fixed $$\mu _{q}$$ μ q in the lowest Landau level (LLL) approximation always remains positive. Within the effect of high Landau levels, $$S_{zz}$$ S zz exhibits a thermal structure similar to that in the LLL approximation. As the Landau level increases further, $$S_{zz}$$ S zz decreases and even its sign changes from positive to negative. The computations of these thermoelectric transport coefficients are also extended to a medium with momentum-anisotropy induced by initial spatial expansion as well as strong magnetic field.


2015 ◽  
Vol 15 (10) ◽  
pp. 8263-8266
Author(s):  
S. C. Kim ◽  
Y. H. Jeong ◽  
S.-R. Eric Yang

Graphene Landau levels have discrete energies consisting zero energy chiral states and non-zero energy states with mixed chirality. Each Landau level splits into discrete energies when a localized potential is present. A simple scaling analysis suggests that a localized potential can act as a strong perturbation, and that it can be even more singular in graphene than in ordinary two-dimensional systems of massful electrons. Parabolic, Coulomb, and Gaussian potentials in graphene may have anomalous boundstates whose probability density has a sharp peak inside the potential and a broad peak of size magnetic length l outside the potential. The n = 0 Landau level with zero energy has only one anomalous state while the n = ±1 Landau levels with non-zero energy have two (integer quantum number n is related to the quantized Landau level energies). These anomalous states can provide a new magnetospectroscopic feature in impurity cyclotron resonances of graphene. In the present work we investigate quantitatively the conditions under which the anomalous states can exist. These results may provide a guide in searching for anomalous states experimentally.


2003 ◽  
Vol 02 (06) ◽  
pp. 611-617
Author(s):  
M. V. ENTIN ◽  
L. I. MAGARILL ◽  
M. M. MAHMOODIAN

The distribution of equilibrium edge current density in 2D system subjected to a strong (quantizing) magnetic field has been studied. The case of half plane in normal magnetic field has been considered. The transition from classical strong magnetic field to ultra-quantum limit has been investigated. We have shown that the edge current density oscillates and decays with distance from the edge. The oscillations have been attributed to the Fermi wavelength of electrons. The additional component of the current smoothly depending on the distance but sensitive to the occupation of Landau levels has been found. The temperature suppression of oscillations has been studied.


Sign in / Sign up

Export Citation Format

Share Document