ON THE DETERMINATION OF CRITICAL POINT IN HIGHER-ORDER VARIATIONAL CUMULANT EXPANSION

1996 ◽  
Vol 10 (12) ◽  
pp. 531-536 ◽  
Author(s):  
X.F. OU ◽  
J.T. OU ◽  
D.L. LIN

To the lowest order approximation, the method of variational cumulant expansion has been successful in the determination of the critical point of a spin system on the Ising model. In the second order calculation, unphysical phase transition arises. In this letter, we first analyze the origin of unphysical phase transitions in high-order variational cumulant expansion calculations. We then explain the basis on which a conjecture is proposed that to any order m of the variational cumulant expansion, the critical point is given by the bifurcation point of the free energy. The theory is finally verified numerically for the two-dimensional case.

2010 ◽  
Vol 19 (08n09) ◽  
pp. 1570-1576
Author(s):  
Z. CHEN ◽  
R. WADA ◽  
A. BONASERA ◽  
T. KEUTGEN ◽  
K. HAGEL ◽  
...  

The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He 4- He 3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.


2003 ◽  
Vol 14 (10) ◽  
pp. 1305-1320 ◽  
Author(s):  
BÜLENT KUTLU

The two-dimensional antiferromagnetic spin-1 Ising model with positive biquadratic interaction is simulated on a cellular automaton which based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transition of the model are presented for a comparison with those obtained from other calculations. We confirm the existence of the intermediate phase observed in previous works for some values of J/K and D/K. The values of the static critical exponents (β, γ and ν) are estimated within the framework of the finite-size scaling theory for D/K<2J/K. Although the results are compatible with the universal Ising critical behavior in the region of D/K<2J/K-4, the model does not exhibit any universal behavior in the interval 2J/K-4<D/K<2J/K.


2020 ◽  
pp. 211-234
Author(s):  
Giuseppe Mussardo

This chapter deals with the exact solution of the two-dimensional Ising model as it is achieved through the transfer matrix formalism. It discusses the crucial role played by the commutative properties of the transfer matrices, which lead to a functional equation for their eigenvalues. The exact free energy of the Ising model and its critical point can be identified by means of the lowest eigenvalue. The chapter covers Baxter's approach, the Yang–Baxter equation and its relation to the Boltzmann weights, the R-matrix, and discusses activity away from the critical point, the six-vertex model, as well as functional equations and symmetries.


Author(s):  
Robert H. Swendsen

Phase transitions are introduced using the van der Waals gas as an example. The equations of state are derived from the Helmholtz free energy of the ideal gas. The behavior of this model is analyzed, and an instability leads to a liquid-gas phase transition. The Maxwell construction for the pressure at which a phase transition occurs is derived. The effect of phase transition on the Gibbs free energy and Helmholtz free energy is shown. Latent heat is defined, and the Clausius–Clapeyron equation is derived. Gibbs' phase rule is derived and illustrated.


2020 ◽  
Vol 34 (13) ◽  
pp. 2050129
Author(s):  
Erhan Albayrak

The A, B and C atoms with spin-1/2, spin-3/2 and spin-5/2 are joined together sequentially on the Bethe lattice in the form of ABCABC[Formula: see text] to simulate a molecule as a triple mixed-spin system. The spins are assumed to be interacting with only their nearest-neighbors via bilinear exchange interaction parameter in addition to crystal and external magnetic fields. The order-parameters are obtained in terms of exact recursion relations, then from the study of their thermal variations, the phase diagrams are calculated on the possible planes of our system. It is found that the model gives only second-order phase transitions in addition to the compensation temperatures.


2000 ◽  
Vol 10 (01) ◽  
pp. 251-256 ◽  
Author(s):  
FRANCISCO SASTRE ◽  
GABRIEL PÉREZ

The diffusively coupled lattice of odd-symmetric chaotic maps introduced by Miller and Huse undergoes a continuous ordering phase transition, belonging to a universality class close but not identical to that of the two-dimensional Ising model. Here we consider a natural mean-field approach for this model, and find that it does not have a well-defined phase transition. We show how this is due to the coexistence of two attractors in its mean-field description, for the region of interest in the coupling. The behavior of the model in this limit then becomes dependent on initial conditions, as can be seen in direct simulations.


Sign in / Sign up

Export Citation Format

Share Document