IMAGE COMPRESSION SYSTEM FOR MOBILE COMMUNICATION: ADVANCEMENT IN THE RECENT YEARS

2006 ◽  
Vol 15 (05) ◽  
pp. 777-815 ◽  
Author(s):  
M. B. I. REAZ ◽  
M. AKTER ◽  
F. MOHD-YASIN

Mobile communication has a great potential to the users due to fulfilling the dreams of real-time multimedia communication like voice, image, and text. The huge amount of data redundancy in still image should be compressed using exact image compression algorithm (ICA) before transmitting via wireless channel. Thus, an ICA should be adaptive, simple, and cost-effective and suitable for feasible implementation. Hardware implementation of the different algorithms has improved using modern, fast, and cost-effective technologies. The main aim of this paper is to review and demonstrate various ICAs developed based on image transmission via wireless channel as well as their hardware implementation. Finally, this review makes bridge for researchers to the future relative studies between different algorithms and architectures, and stands as a reference point for developing more controlling and flexible structures.

2019 ◽  
Vol 16 (9) ◽  
pp. 3912-3916 ◽  
Author(s):  
Rekha Dalia ◽  
Rajeev Gupta

Unlike conventional networks, in Wireless Sensor Network the nodes have constrained energy, memory and processing capabilities. These nodes deployed in a constrained environment monitor any changes in surrounding environment and transfer the changes to the cluster heads. Each node has its own memory, battery, and transceivers. Efficient utilization of these resources can result in the enhancement of network lifetime. In order to securely transfer the data in the form of images, an efficient and cost effective image compression algorithm is required. Hence, in this paper, a detailed review of image compression algorithms has been carried out. The selected algorithms are compared in terms of various performance metrics such as compression ratio, compression time, speed, type of data, etc. The results showed that algorithm proposed by Borici and Arber is the best in case of compression ratio, as it provides better compression ratio in comparison to other algorithms.


Author(s):  
JUNMEI ZHONG ◽  
C. H. LEUNG ◽  
Y. Y. TANG

In recent years, wavelets have attracted great attention in both still image compression and video coding, and several novel wavelet-based image compression algorithms have been developed so far, one of which is Shapiro's embedded zerotree wavelet (EZW) image compression algorithm. However, there are still some deficiencies in this algorithm. In this paper, after the analysis of the deficiency in EZW, a new algorithm based on quantized coefficient partitioning using morphological operation is proposed. Instead of encoding the coefficients in each subband line-by-line, regions in which most of the quantized coefficients are significant are extracted by morphological dilation and encoded first. This is followed by using zerotrees to encode the remaining space which has mostly zeros. Experimental results show that the proposed algorithm is not only superior to the EZW, but also compares favorably with the most efficient wavelet-based image compression algorithms reported so far.


2012 ◽  
Vol 160 ◽  
pp. 400-404
Author(s):  
Hui Guo ◽  
Jie He

Due to the huge amount of image data transmission conditions and the existing relative low, makes the image compression become inevitable, key technology of image compression for image data transform to transform the quantitative data, as well as to the quantitative data, after the entropy coding.And this article USES the 2 d Mallat of wavelet image compression algorithm is a kind of common image compression method of wavelet image compression algorithm is the core.


2017 ◽  
Vol 27 (02) ◽  
pp. 1850033 ◽  
Author(s):  
Umar Mujahid ◽  
M. Najam-ul-Islam ◽  
Madiha Khalid

Internet of Things (IoTs) are becoming one of the integral parts of our lives, as all of the modern devices including pervasive systems use internet for its connectivity with the rest of the world. The Radio Frequency IDentification (RFID) provides unique identification and nonline of sight capabilities, therefore plays a very important role in development of IoTs. However, the RFID systems incorporate wireless channel for communication, therefore have some allied risks to the system from threat agents. In order to prevent the system from malicious activities in a cost effective way, numerous Ultralightweight Mutual Authentication Protocols (UMAPs) have been proposed since last decade. These UMAPs mainly involve simple bitwise logical operators such as XOR, AND, OR, etc., in their designs and can be implemented with extremely low cost RFID tags. However, most of the UMAP designers didn’t provide the proper hardware approximations of their UMAPs and presented only theoretical results which mostly mislead the reader. In this paper, we have addressed this problem by reporting our experiences with FPGA and ASIC-based implementation of UMAP named psuedo Kasami code-based Mutual Authentication Protocol (KMAP[Formula: see text]. Further, we have also improved the structure of the KMAP protocol to overcome the previously highlighted attack model. The hardware implementation results show that KMAP[Formula: see text] successfully conform to EPC-C1G2 tags and can be implemented using less than 4[Formula: see text]K GE (for 32-bit word length).


Author(s):  
Jibanananda Mishra ◽  
Bishnu Prasad Mishra ◽  
Rabinarayana Parida ◽  
Ranjan Kumar Jena

When using wireless sensor networks for real-time data transmission, some critical points should be considered. Restricted computational power, memory limitations, narrow bandwidth and energy supplied present strong limits in sensor nodes. Therefore, maximizing network lifetime and minimizing energy consumption are always optimization goals. To reduce the energy consumption of the sensor network during image transmission, an energy efficient image compression scheme is proposed. The image compression scheme reduces the required memory. To address the above mentioned concerns, in this paper we describe an approach of image transmission in WSNs , taking advantage of JPEG2000 still image compression standard and using MATLAB . These features were achieved using techniques: the Discrete Wavelet Transform (DWT), and Embedded Block Coding with Optimized Truncation (EBCOT). Performance of the proposed image compression scheme is investigated with respect to image quality and energy consumption. Simulation results are presented and show that the proposed scheme optimizes network lifetime and reduces significantly the amount of required memory by analyzing the functional influence of each parameter of this distributed image compression algorithm.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Shaik. Mahaboob Basha ◽  
B. C. Jinaga

The research trends that are available in the area of image compression for various imaging applications are not adequate for some of the applications. These applications require good visual quality in processing. In general the tradeoff between compression efficiency and picture quality is the most important parameter to validate the work. The existing algorithms for still image compression were developed by considering the compression efficiency parameter by giving least importance to the visual quality in processing. Hence, we proposed a novel lossless image compression algorithm based on Golomb-Rice coding which was efficiently suited for various types of digital images. Thus, in this work, we specifically address the following problem that is to maintain the compression ratio for better visual quality in the reconstruction and considerable gain in the values of peak signal-to-noise ratios (PSNR). We considered medical images, satellite extracted images, and natural images for the inspection and proposed a novel technique to increase the visual quality of the reconstructed image.


Sign in / Sign up

Export Citation Format

Share Document