Energy Harvesting and Management in Wireless Networks for Perpetual Operations

2015 ◽  
Vol 24 (03) ◽  
pp. 1550041 ◽  
Author(s):  
Muhammad Mazhar Abbas ◽  
Zia Muhammad ◽  
Khalid Saleem ◽  
Nazar Abbas Saqib ◽  
Hasan Mahmood

Ad hoc wireless networks are self-generating and self-organizing networks consisting of mobile and static nodes, which are small and have limited power resources. In a typical setup, these nodes communicate with each other through wireless medium and may act as source, destination and/or relaying nodes. As the power of the remote nodes is depleted very quickly, it is important to have a renewable energy source to support the network operations and increase lifetime. The availability of energy from the environment is unpredictable, random and uncertain, therefore energy harvesting with appropriate management plays an important role in continuous operations of ad hoc networks. In this paper, an energy harvesting and management model is presented for ad hoc networks. Along with harvesting energy, the proposed model ensures the connectivity requirements of the network for its perpetual operation.

Mobile ad hoc networks, abbreviated to MANETs are covering various application fields with the significant advancements in wireless networks. In the recent past, the multimedia transmission over such networks has drawn the attention from researchers and scientists. In wireless medium, it is always advantageous to go for multicast routing than unicast routing. This paper focuses on the performance analysis of a multicast routing protocol, multicast ad hoc on-demand distance vector (MAODV), and its modified version QoS-MAODV, to support multimedia transmission over ad hoc environments.


Author(s):  
Tamaghna Acharya ◽  
Santi P. Maity

The acute scarcity of radio frequency spectrum has inspired to think of a new communication technology where the devices are expected to be able to sense and adapt to their spectral environment, thereby appearing as cognitive radios (CR) who can share opportunistically the bands assigned to primary users (PUs). At the same time, low cost, increased coverage, enhanced capacity, infrastructure-less configuration, and so forth, become the essence of future wireless networks. Although the two research fields came up independently, in due time it is observed that CR has a promising future and has excellent applications in wireless networks. To this aim, this chapter explores some scope of integration in CR and ad hoc networks (called here CRAHNETs) in some specific design perspective. First, a brief literature review on CR power allocation and energy aware routing in wireless ad hoc networks (WANETs) is done that highlights the importance for the scope of their integration. Then, power allocation in CRAHNETs with extended network lifetime is considered as an example problem. More specifically, the design problem is: given a set of paths (routes) between a pair of source (S) and destination (D) nodes in CRAHNETs, how to allocate optimal power to the source and relay nodes such that outage probability for data transmission is minimized and network lifetime is enhanced, while meeting the limits of total transmit power of CRs and interference threshold to PU simultaneously. A solution for the stated problem is proposed along with performance evaluation. A few related research problems are mentioned as future research directions.


Author(s):  
Piyush Kumar Shukla ◽  
Kirti Raj Bhatele

Wireless Networks are vulnerable in nature, mainly due to the behavior of node communicating through it. As a result, attacks with malicious intent have been and will be devised to exploit these vulnerabilities and to cripple MANET operation. In this chapter, we analyze the security problems in MANET. On the prevention side, various key and trust management schemes have been developed to prevent external attacks from outsiders. Both prevention and detection method will work together to address the security concern in MANET.


Author(s):  
Arundhati Arjaria

Mobile ad hoc networks are infrastructure-less wireless networks; all nodes can quickly share information without using any fixed infrastructure like base station or access point. Wireless ad hoc networks are characterized by frequent topology changes, unreliable wireless channel, network congestion, and resource contention. Multimedia applications usually are bandwidth hungry with stringent delay, jitter, and loss requirements. Designing ad hoc networks which support multimedia applications, hence, is considered a hard task. The hidden and exposed terminal problems are the main which consequently reduces the network capacity. Hidden and exposed nodes reduce the performance of the wireless ad hoc networks. Access delay is the major parameter that is to be taken under consideration. Due to hidden and exposed terminal problems, the network suffers from a serious unfairness problem.


Author(s):  
Gongjun Yan ◽  
Stephan Olariu ◽  
Shaharuddin Salleh

The key attribute that distinguishes Vehicular Ad hoc Networks (VANET) from Mobile Ad hoc Networks (MANET) is scale. While MANET networks involve up to one hundred nodes and are short lived, being deployed in support of special-purpose operations, VANET networks involve millions of vehicles on thousands of kilometers of highways and city streets. Being mission-driven, MANET mobility is inherently limited by the application at hand. In most MANET applications, mobility occurs at low speed. By contrast, VANET networks involve vehicles that move at high speed, often well beyond what is reasonable or legally stipulated. Given the scale of its mobility and number of actors involved, the topology of VANET is changing constantly and, as a result, both individual links and routing paths are inherently unstable. Motivated by this latter truism, the authors propose a probability model for link duration based on realistic vehicular dynamics and radio propagation assumptions. The paper illustrates how the proposed model can be incorporated in a routing protocol, which results in paths that are easier to construct and maintain. Extensive simulation results confirm that this probabilistic routing protocol results in more easily maintainable paths.


2009 ◽  
pp. 2996-3011
Author(s):  
S. Shanmugavel ◽  
C. Gomathy

As mobile computing gains popularity, the need for ad hoc routing also continues to grow. In mobile ad hoc networks, the mobility of nodes and error prone nature of the wireless medium pose many challenges, including frequent route changes and packet losses. Such problems increase the packet delays and decrease the throughput. To meet with the dynamic queuing behaviour of Ad hoc networks, to provide QoS and hence to improve the performance, a scheduler can be used. This chapter presents a novel fuzzy based priority scheduler for mobile ad-hoc networks, to determine the priority of the packets. The performance of this scheduler is studied using GloMoSim and evaluated in terms of quantitative metrics such as packet delivery ratio, average end-to-end delay and throughput.


Author(s):  
N. Chand

Mobile wireless networks allow a more flexible communication structure than traditional networks. Wireless communication enables information transfer among a network of disconnected, and often mobile, users. Popular wireless networks such as mobile phone networks and wireless local area networks (LANs), are traditionally infrastructure based—that is, base stations (BSs), access points (APs), and servers are deployed before the network can be used. A mobile ad hoc network (MANET) consists of a group of mobile hosts that may communicate with each other without fixed wireless infrastructure. In contrast to conventional cellular systems, there is no master-slave relationship between nodes, such as base station to mobile users in ad-hoc networks. Communication between nodes can be supported by direct connection or multi-hop relays. The nodes have the responsibility of self-organizing so that the network is robust to the variations in network topology due to node mobility as well as the fluctuations of the signal quality in the wireless environment. All of these guarantee anywhere and anytime communication. Recently, mobile ad-hoc networks have been receiving increasing attention in both commercial and military applications.


Sign in / Sign up

Export Citation Format

Share Document