Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends

2017 ◽  
Vol 26 (12) ◽  
pp. 1730004 ◽  
Author(s):  
Sonia Afrooz ◽  
Nima Jafari Navimipour

Quantum-dot cellular automata (QCA) has come out as one of the potential computational structures for the emerging nanocomputing systems. It has a large capacity in the development of circuits with high space density and dissipation of low heat and allows faster computers to develop with lower power consumption. The QCA is a new appliance to realize nanolevel digital devices and study and analyze their various parameters. It is also a potential technology for low force and high-density memory plans. Large memory designs in QCA show unique features because of their architectural structure. In QCA-based architectures, memory must be maintained in motion, i.e., the memory state has to be continuously moved through a set of QCA cells. These architectures have different features, such as the number of bits stored in a loop, access type (serial or parallel) and cell arrangement for the memory bank. However, the decisive features of the QCA memory cell design are the number of cells, to put off the use of energy. Although the review and study of the QCA-based memories are very important, there is no complete and systematic literature review about the systematical analyses of the state of the mechanisms in this field. Therefore, there are five main types to provide systematic reviews about the QCA-based memories; including read only memory (ROM), register, flip-flop, content addressable memory (CAM) and random access memory (RAM). Also, it has provided the advantages and disadvantages of the reviewed mechanisms and their important challenges so that some interesting lines for any coming research are provided.

2018 ◽  
Vol 7 (4.36) ◽  
pp. 306
Author(s):  
Amita Asthana ◽  
Dr. Anil Kumar ◽  
Dr. Preeta Sharan ◽  
Dr. Sumita Mishra

Quantum dot Cellular Automata is one of the promising future nano-technology for transistor-less computing which takes advantage of the coulomb force interacting between electrons. The aim of this paper is to consider the logical circuits of ARM processors and further reducing their size in nanometres like 2:1 multiplexer , D Flip Flop, scan Flip Flop, 2:1 multiplexer with enable, encoder, decoder, SR FF, shift register, memory cell and program counter are designed  using QCAD tool . Their cell count, area, kink energy are taken in consideration to calculate power and energy dissipation.  


2018 ◽  
Vol 27 (10) ◽  
pp. 1830005 ◽  
Author(s):  
Mahya Rahimpour Gadim ◽  
Nima Jafari Navimipour

Quantum-dot Cellular Automata (QCA) presents a new model at Nano-scale for possible substitution of conventional Complementary Metal–Oxide–Semiconductor (CMOS) technology. On the other hand, an Arithmetic Logic Unit (ALU) is a digital electronic circuit which performs arithmetic and bitwise logical operations on integer binary numbers. Therefore, QCA-based ALU is an important part of the processor in order to develop a full capability processor. Although the QCA has become very important, there is not any comprehensive and systematic work on studying and analyzing its important techniques in the field of ALU design. This paper provides the comprehensive, systematic and detailed study and survey of the state-of-the-art techniques and mechanisms in the field of QCA-based ALU designing. There are three categories in which QCA plays a role: ALU, logic unit (LU) and arithmetic unit (AU). Each category presents the important studies. In addition, this paper reviews the major developments in these three categories and it plans the new challenges. Furthermore, it provides the identification of open issues and guidelines for future research. Also, a Systematic Literature Review (SLR) on QCA-based ALU, LU and AU is discussed in this paper. We identified 1,960 papers, which are reduced to 26 primary studies through our paper selection process. According to the obtained results from 2001 to 2015, the number of published articles are very high in 2014 and low in 2005 and 2009. This survey paper also provides a discussion of considered mechanisms in terms of ALU, LU and AU attribute as well as directions for future research.


2020 ◽  
Vol 10 (4) ◽  
pp. 534-547
Author(s):  
Chiradeep Mukherjee ◽  
Saradindu Panda ◽  
Asish K. Mukhopadhyay ◽  
Bansibadan Maji

Background: The advancement of VLSI in the application of emerging nanotechnology explores quantum-dot cellular automata (QCA) which has got wide acceptance owing to its ultra-high operating speed, extremely low power dissipation with a considerable reduction in feature size. The QCA architectures are emerging as a potential alternative to the conventional complementary metal oxide semiconductor (CMOS) technology. Experimental: Since the register unit has a crucial role in digital data transfer between the electronic devices, such study leading to the design of cost-efficient and highly reliable QCA register is expected to be a prudent area of research. A thorough survey on the existing literature shows that the generic models of Serial-in Serial Out (SISO), Serial-in-Parallel-Out (SIPO), Parallel-In- Serial-Out (PISO) and Parallel-in-Parallel-Out (PIPO) registers are inadequate in terms of design parameters like effective area, delay, O-Cost, Costα, etc. Results: This work introduces a layered T gate for the design of the D flip flop (LTD unit), which can be broadly used in SISO, SIPO, PISO, and PIPO register designs. For detection and reporting of high susceptible errors and defects at the nanoscale, the reliability and defect tolerant analysis of LTD unit are also carried out in this work. The QCA design metrics for the general register layouts using LTD unit is modeled. Conclusion: Moreover, the cost metrics for the proposed LTD layouts are thoroughly studied to check the functional complexity, fabrication difficulty and irreversible power dissipation of QCA register layouts.


2019 ◽  
Vol 21 ◽  
pp. 100252 ◽  
Author(s):  
Azath Mubarakali ◽  
Jayabrabu Ramakrishnan ◽  
Dinesh Mavaluru ◽  
Amria Elsir ◽  
Omer Elsier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document