scholarly journals Asymmetric Coplanar F-strip Fed Antenna for Dual Band Wireless Applications

Author(s):  
Ansal Kalikuzhackal Abbas ◽  
Thangavelu Shanmuganatham

<p>A compact planar antenna for dual band applications is presented in this paper. The proposed antenna has Dumbbell shaped defect on the ground plane and it is fed by Asymmetric coplanar strip(ACS). The antenna is printed on FR4 epoxy substrate and it has a compact size of 21× 19 × 1.6 mm<sup>3</sup>. The antenna exhibits a dual band of resonances at 3.4GHz and 5.5 GHz which is used for WiMAX/WLAN. The planar design, simple feeding techniques and compactness make it easy for the integration of the antenna into circuit boards. Details of the antenna design and simulated results are presented and discussed. Simulation tool, based on the method of moments (Mentor Graphics IE3D version 15.10) has been used to analyze and optimize the antenna. Various features such as compactness, simple con-figuration and low fabrication cost make the antenna is suitable for dual band wireless applications.</p>

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 54
Author(s):  
Sanae Azizi ◽  
Laurent Canale ◽  
Saida Ahyoud ◽  
Georges Zissis ◽  
Adel Asselman

This paper presents the design of a compact size band patch antenna for 5G wireless communications. This wideband antenna was designed on a glass substrate (12 × 11 × 2 mm3) and is optically transparent and compact. It consists of a radiation patch and a ground plane using AgHT-8 material. The antenna design comprises rectangular shaped branches optimized to attain the wideband characteristics. The calculated impedance bandwidth is 7.7% covering the frequency range of 25 to 27 GHz. A prototype of the antenna and various parameters such as return loss plot, gain plot, radiation pattern plot, and voltage standing wave ratio (VSWR) are presented and discussed. The simulated results of this antenna show that it is well suited for future 5G applications because of its transparency, flexibility, light weight, and wide achievable frequency bandwidth near the millimeter wave frequency band.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Maurício Henrique Costa Dias ◽  
Bruno Roberto Franciscatto ◽  
Hans Adel ◽  
Tan-Phu Vuong

Among the present technologies for WLAN devices, USB dongles still play a noticeable role. One major design challenge regards the antenna, which unavoidably has to comply with a very small volume available and sometimes should also allow multiband operation. In this scope, the present work discusses a dual-band WiFi compact planar IFA-based antenna design for a low-cost USB dongle application. Like most of the related published solutions, the methodology for deriving the present proposition was assisted by the use of an antenna analysis software. A prototype was assembled and tested in order to qualify the radiator design. Practical operation conditions were considered in the tests, such as the influence of the dongle case and the effect of the notebook itself. The results complied with the design constraints, presenting an impedance match quite stable regardless of the stick position alongside a laptop base.


2014 ◽  
Vol 8 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Jawad Ali ◽  
Seevan Abdulkareem ◽  
Ali Hammoodi ◽  
Ali Salim ◽  
Mahmood Yassen ◽  
...  

Fractal geometries are attractive for antenna designers seeking antennas with compact size and multiband resonant behavior. This paper presents the design of a new microstrip-fed printed slot antenna for use in dual-band wireless applications. The slot structure of the proposed antenna is in the form of Cantor square fractal geometry of the second iteration. The slot structure has been etched on the ground plane of a substrate with relative permittivity of 4.4 and 1.6 mm in thickness. A parametric study is conducted to explore the effects of some geometrical parameters on the antenna performance. Results show that the antenna possesses a dual-band behavior with a wide range of resonant frequency ratio. In addition to the ease of fabrication and simple design procedure, the antenna offers desirable radiation characteristics. A prototype of the proposed antenna has been simulated, fabricated, and measured. The measured 10 dB return loss bandwidths for the lower and the upper resonant bands are 42% (2.35–3.61 GHz) and 20% (5.15–6.25 GHz), respectively. This makes the proposed antenna suitable to cover a number of operating bands of wireless systems (2.4 GHz-Bluetooth, 2.4 GHz ISM, 2.4/5.8 GHz-WLAN, 3.5 GHz-WiMAX, and 5.8 GHz-ITS).


2019 ◽  
Vol 28 (13) ◽  
pp. 1950220
Author(s):  
Ahmed Zakaria Manouare ◽  
Saida Ibnyaich ◽  
Abdelaziz EL Idrissi ◽  
Abdelilah Ghammaz

In this paper, we present the design of a compact planar monopole antenna for dual-band wireless communication applications. The proposed antenna is based on a planar structure composed by a CPW feed line and a rectangular ring with a vertical strip. The designed antenna has a small overall size of [Formula: see text][Formula: see text]mm3. Dual-band characteristics can be obtained by adjusting the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the dimensions of the rectangular ring and the length of the vertical strip. A prototype of the proposed antenna which was fabricated and measured to validate the design reveals that there is a good agreement between the simulation and the experiment. The measured result shows that the antenna has the impedance bandwidths of 610[Formula: see text]MHz (2–2.61[Formula: see text]GHz) and 2600[Formula: see text]MHz (3.18–5.78[Formula: see text]GHz) with a reflection coefficient less than [Formula: see text]10[Formula: see text]dB covering all the LTE 2300, 2.4-GHz band, WiMAX, C-band and HiperLAN/2 applications. In addition, the dual-band monopole antenna exhibits almost omnidirectional radiation patterns and an appreciable gain over the operating frequency bands. Details of the proposed antenna design and both simulated and experimental results are analyzed and discussed.


2021 ◽  
Vol 11 (2) ◽  
pp. 693
Author(s):  
Arjun Surendran ◽  
Aravind B ◽  
Tanweer Ali ◽  
Om Prakash Kumar ◽  
Pradeep Kumar ◽  
...  

Franklin array antennas are considered as one of the most competitive candidates for millimeter-wave (mmW) 5G applications due to their compact size, simple geometry and high gain. This paper describes a microstrip Franklin antenna array for fifth generation (5G) wireless applications. The proposed modified Franklin array is based on a collinear array structure with the objective of achieving broad bandwidth, high directivity, and dual-band operation at 22.7 and 34.9 GHz. The designed antenna consists of a 3 × 3 array patch element as the radiating part and a 3 × 3 slotted ground plane operating at a multiband resonance in the mmW range. The dimensions of the patch antennas are designed based on λ/2 of the second resonant frequency. The designed antenna shows dual band operation with a total impedance bandwidth ranging from 21.5 to 24.3 GHz (fractional bandwidth of 12.2%) at the first band and from 33.9 to 36 GHz (fractional bandwidth of 6%) at the second band in simulation. In measurement, the impedance bandwidth ranges from 21.5 to 24.5 GHz (fractional bandwidth of 13%) at the first band and from 34.3 to 36.2 GHz (fractional bandwidth of 5.3%) at the second band, respectively. The performance of the antenna is analyzed by parametric analysis by modifying various parameters of the antenna. All the necessary simulations are carried out using HFSS v.14.0.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1321
Author(s):  
Wahaj Abbas Awan ◽  
Syeda Iffat Naqvi ◽  
Wael Abd Ellatif Ali ◽  
Niamat Hussain ◽  
Amjad Iqbal ◽  
...  

This paper presents a compact and simple reconfigurable antenna with wide-band, dual-band, and single-band operating modes. Initially, a co-planar waveguide-fed triangular monopole antenna is obtained with a wide operational frequency band ranging from 4.0 GHz to 7.8 GHz. Then, two additional stubs are connected to the triangular monopole through two p-i-n diodes. By electrically switching these p-i-n diodes ON and OFF, different operating frequency bands can be attained. When turning ON only one diode, the antenna offers dual-band operations of 3.3–4.2 GHz and 5.8–7.2 GHz. Meanwhile, the antenna with single-band operation from 3.3 GHz to 4.2 GHz can be realized when both of the p-i-n diodes are switched to ON states. The proposed compact size antenna with dimensions of 0.27λ0 × 0.16λ0 × 0.017λ0 at the lower operating frequency (3.3 GHz) can be used for several wireless applications such as worldwide interoperability for microwave access (WiMAX), wireless access in the vehicular environment (WAVE), and wireless local area network (WLAN). A comparative analysis with state-of-the-art works exhibits that the presented design possesses advantages of compact size and multiple operating modes.


Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Sachin Kumar

Abstract A compact circularly polarized (CP) patch antenna is presented for modern communication systems. The prospective antenna consists of a microstrip-line inset-fed rectangular patch and a defected ground plane. A rotated rectangular slot and a modified electric-inductive-capacitive (m-ELC) resonator are introduced in the patch and the ground plane to achieve multiband behaviour. A corner of the radiating patch is truncated and an arrow-shaped stub is introduced for generating circular polarization. The physical area of the substrate is 0.26λ0 × 0.22λ0, and the radiator size is 0.16λ0 × 0.14λ0, where λ0 is the free-space wavelength estimated at the lowest frequency. The measured (S11≤-10 dB) bandwidths of the antenna are 80 MHz (3.58%) at 2.23 GHz, 75 MHz (2.64%) at 2.84 GHz, 80 MHz (2.50%) at 3.19 GHz, and 70 MHz (1.82%) at 3.83 GHz. The measured 3-dB axial ratio bandwidths are 40 MHz (1.41%), 100 MHz (3.12%), and 60 MHz (1.57%) at 2.84, 3.20 and 3.82 GHz, respectively. The proposed planar antenna design does not need dual-feed or multi-layered patches for achieving multiple CP bands. It offers easy integration with the printed circuits of the communication systems.


Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


Author(s):  
Swati Dhandade

This paper presents a dual-band MIMO antenna design with compact size for 5G communication under 6 GHz band frequency. The metallic monopole stub structure is used to miniaturization of antenna. The L-shape monopole antenna is modified by adding semi-circular element in radiating structure of monopole to obtain dual-band resonance. The High isolation is achieved by employing T-shaped stub in ground plane.It has compact size is 45 mm × 25 mm × 1.6 mm3. The proposed Dual Band MIMO antenna has been design on FR4 material with ɛr = 4.4 with 1.6 thickness. The proposed antenna has 5G application in the bands of 2.5 GHz (2.34 GHz-2.62 GHz) and 3.5 GHz (3.20 GHz-5.20 GHz). The bandwidth of antenna getting 320MHz and 2500MHz at 2.5GHz and 3.5GHz respectively. The Isolation (S21) of proposed antenna is -31.2 dB at 2.5 GHz and -19.5 dB at 3.5 GHz. VSWR is less than 1.06 for both the bands. The designed dual band MIMO antenna covers 5G bands of 2.3-2.4GHz (n30/n40), 2.4-2.5GHz (n7/n38/n41/n90), and 3.2-5.2GHz (n77/n78/n80). The experimental and simulated results observed good matching except some slight variation. This proposed dual band MIMO antenna is suitable for 5G mobile Communications.


Sign in / Sign up

Export Citation Format

Share Document