Realization Approach for Sinusoidal Signal Generation and Circuit with Easy Control

2019 ◽  
Vol 29 (02) ◽  
pp. 2050031
Author(s):  
S. Maheshwari

A new approach for realizing sinusoidal signal with quadrature property is proposed, which employs simple analog building blocks and facilitates easy tuning of the oscillation frequency, through a gain factor. The proposed approach is used for realizing a novel quadrature oscillator circuit, which requires three current feedback operational amplifiers and passive components. The proposed circuit provides outputs at low impedance terminals, and benefits from easy control over the frequency of oscillation (FO), which depends on resistive ratio, rather than absolute resistor values. The frequency control is also independent of the condition of oscillation (CO). The nonideal effects and the parasitic studies are presented. The verification of the proposed realization scheme for quadrature oscillators and the new circuit is carried out through both simulation studies and experimental results, using the commercially available chips.

2010 ◽  
Vol 19 (05) ◽  
pp. 1069-1076 ◽  
Author(s):  
ABHIRUP LAHIRI

A number of sinusoidal oscillators using current differencing buffered amplifiers (CDBAs) have been reported in the literature. However, only three of them are canonic quadrature oscillators (i.e., requiring two capacitors). The aim of this letter is to present additional realizations of single/dual-resistance-controlled quadrature oscillators using CDBAs. Four voltage-mode quadrature oscillators are proposed, which provide the following advantageous features: (i) use of reduced and canonic component count, viz. two CDBAs, three/four resistors and two capacitors, (ii) all passive components are grounded or virtually grounded, which is favorable from integration point of view and (iii) independent and non-interactive resistor control of the condition of oscillation (CO) and the frequency of oscillation (FO). Simulation results verifying the workability of the proposed circuits have been included.


2013 ◽  
Vol 712-715 ◽  
pp. 1886-1890
Author(s):  
Lei Zhang ◽  
Zhong Ming Pan

For designing GMI sensors, realization of current/voltage-mode (dual-mode) quadrature sinusoidal oscillator with the employment of current follower transconductance amplifier (CFTA) as the active component is presented. The proposed circuit configuration comprising two CFTAs, one grounded resistor and two grounded capacitors can simultaneously provide two explicit quadrature output currents and two quadrature output voltages. Moreover, the proposed circuit topology enjoys the advantage of independent control of the condition of oscillation and frequency of oscillation and good active and passive sensitivity performances. The functionality of the proposed quadrature oscillators has been verified by PSPICE simulations.


Author(s):  
Vladimir L. Kodkin ◽  
Aleksandr S. Anikin

The article proposes and substantiates a method for studying the dynamics of an asynchronous electric drives with frequency control from the input side of the signal for setting the speed of rotation of the electric motor. In this method, a constant speed reference signal is added to a harmonic variable frequency signal. The set of amplitude changes and phase shifts of velocity oscillations are the initial data for identifying the dynamics of the studied control method. The logic of this method is determined by the previously obtained nonlinear transfer function of the link that forms the mechanical moment in the asynchronous electric drive with frequency control. Experiments have shown the dynamic benefits of the drive with positive stator current feedback.


2005 ◽  
Vol 14 (02) ◽  
pp. 195-203 ◽  
Author(s):  
ALI ÜMIT KESKIN

Negative impedance converter circuits (NICs) are important building blocks in design and manufacturing of analog and mixed mode integrated circuits. In this paper, a catalogue of single-current feedback amplifier-based negative impedance converter circuits having impedance scaling properties is proposed. Various examples are presented to illustrate the versatility of the proposed NIC circuits.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Thomas Hinze ◽  
Mathias Schumann ◽  
Christian Bodenstein ◽  
Ines Heiland ◽  
Stefan Schuster

Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically.


2010 ◽  
Vol 19 (03) ◽  
pp. 689-699 ◽  
Author(s):  
ERKAN YUCE

In this paper, four instrumentation amplifier (IA) topologies, one of which is current-mode (CM) while the others are voltage-mode (VM), are presented. Three of the IAs use one to two current feedback operational amplifiers (CFOAs) while the other one employs only a single NMOS transistor. One of the IA circuits, given as an example, is simple while others are novel. The CM IA is composed of only grounded resistors which have some advantages in integrated circuit (IC) process. Non-ideality effects such as non-ideal gain and parasitic impedances on the performance of introduced IAs are discussed. In order to show the performance of the circuits, we perform experimental tests and simulations by using SPICE program.


Author(s):  
Vladimir L. Kodkin ◽  
Aleksandr Sergeevich Anikin ◽  
Aleksandr A. Baldenkov

<span>The efficiency of analyzing the rotor currents of asynchronous electric drives with frequency control is substantiated in the article. To assess the quality of torque generation in the engine it is suggested to use the spectral analysis of these currents and the fundamental harmonic, as the most accurate "conformity" of slip in an asynchronous motor. The proposed method showed that "sensorless vector" control leads to the appearance of high-frequency harmonics with significant amplitude. Because of these harmonics, a non-sinusoidal electromagnetic moment is created and the performance of the drive is decreased. The most effective method of torque generation is the frequency control with positive stator current feedback. This control is dominated by pronounced harmonic components, which indicates the proximity of this structure to linear and significantly better controllability of the drives, which makes promising their use in high-tech mechanisms, in particular, in industrial robots. Simulation and experiments confirm the proposed theoretical propositions.</span>


Sign in / Sign up

Export Citation Format

Share Document