COMPLEXITY OF EYE MOVEMENTS IN READING

2004 ◽  
Vol 14 (02) ◽  
pp. 493-503 ◽  
Author(s):  
R. ENGBERT ◽  
R. KLIEGL ◽  
A. LONGTIN

During reading, our eyes perform complicated sequences of fixations on words. Stochastic models of eye movement control suggest that this seemingly erratic behavior can be attributed to noise in the oculomotor system and random fluctuations in lexical processing. Here, we present a qualitative analysis of a recently published dynamical model [Engbert et al., 2002] and propose that deterministic nonlinear control accounts for much of the observed complexity of eye movement patterns during reading. Based on a symbolic coding technique we analyze robust statistical features of simulated fixation sequences.

2011 ◽  
Vol 4 (1) ◽  
Author(s):  
Tessa Warren ◽  
Erik D. Reichle ◽  
Nikole D. Patson

The current study investigated how a post-lexical complexity manipulation followed by a lexical complexity manipulation affects eye movements during reading. Both manipulations caused disruption in all measures on the manipulated words, but the patterns of spillover differed. Critically, the effects of the two kinds of manipulations did not interact, and there was no evidence that post-lexical processing difficulty delayed lexical processing on the next word (c.f. Henderson & Ferreira, 1990). This suggests that post-lexical processing of one word and lexical processing of the next can proceed independently and likely in parallel. This finding is consistent with the assumptions of the E-Z Reader model of eye movement control in reading (Reichle, Warren, & McConnell, 2009).


2018 ◽  
Vol 71 (1) ◽  
pp. 179-189 ◽  
Author(s):  
Victoria A McGowan ◽  
Erik D Reichle

Eye-movement studies have demonstrated that, relative to college-aged readers, older readers of alphabetic languages like English and German tend to read more slowly, making more frequent and longer fixations and longer saccades, and skipping more words, but also making more frequent regressions. These findings have led to suggestions that older readers either adopt a “risky” strategy of using context to “guess” words as a way of compensating for slower rates of lexical processing, or have a smaller and more asymmetrical perceptual span. Unfortunately, neither of these hypotheses seemingly explains more recent observations that older readers of Chinese seem to adopt a more “conservative” strategy, making shorter saccades and skipping less often. In this paper, we use the E-Z Reader model of eye-movement control to examine several possible accounts of the differences between college-aged and older readers of both alphabetic and non-alphabetic languages. These simulations re-confirm that the “risky” strategy may be sufficient to explain age-related differences in reader’s eye movements, with older readers of English versus Chinese being, respectively, more versus less inclined to guess upcoming words. The implications of these results for aging, reading, and models of eye-movement control are discussed.


2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


2021 ◽  
pp. 1-26
Author(s):  
Jan-Louis Kruger ◽  
Natalia Wisniewska ◽  
Sixin Liao

Abstract High subtitle speed undoubtedly impacts the viewer experience. However, little is known about how fast subtitles might impact the reading of individual words. This article presents new findings on the effect of subtitle speed on viewers’ reading behavior using word-based eye-tracking measures with specific attention to word skipping and rereading. In multimodal reading situations such as reading subtitles in video, rereading allows people to correct for oculomotor error or comprehension failure during linguistic processing or integrate words with elements of the image to build a situation model of the video. However, the opportunity to reread words, to read the majority of the words in the subtitle and to read subtitles to completion, is likely to be compromised when subtitles are too fast. Participants watched videos with subtitles at 12, 20, and 28 characters per second (cps) while their eye movements were recorded. It was found that comprehension declined as speed increased. Eye movement records also showed that faster subtitles resulted in more incomplete reading of subtitles. Furthermore, increased speed also caused fewer words to be reread following both horizontal eye movements (likely resulting in reduced lexical processing) and vertical eye movements (which would likely reduce higher-level comprehension and integration).


1989 ◽  
Vol 1 (2) ◽  
pp. 230-241 ◽  
Author(s):  
Thomas J. Anastasio ◽  
David A. Robinson

The mechanisms of eye-movement control are among the best understood in motor neurophysiology. Detailed anatomical and physiological data have paved the way for theoretical models that have unified existing knowledge and suggested further experiments. These models have generally taken the form of black-box diagrams (for example, Robinson 1981) representing the flow of hypothetical signals between idealized signal-processing blocks. They approximate overall oculomotor behavior but indicate little about how real eye-movement signals would be carried and processed by real neural networks. Neurons that combine and transmit oculomotor signals, such as those in the vestibular nucleus (VN), actually do so in a diverse, seemingly random way that would be impossible to predict from a block diagram. The purpose of this study is to use a neural-network learning scheme (Rumelhart et al. 1986) to construct parallel, distributed models of the vestibulo-oculomotor system that simulate the diversity of responses recorded experimentally from VN neurons.


2019 ◽  
Vol 116 (6) ◽  
pp. 2027-2032 ◽  
Author(s):  
Jasper H. Fabius ◽  
Alessio Fracasso ◽  
Tanja C. W. Nijboer ◽  
Stefan Van der Stigchel

Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing.


In chapter 1 we describe the method of eye-tracking and how the interest to studying eye movements developed in time. We describe how modern eye-tracking devices work, including several most commonly used in cognitive research (SR-Research, SMI, Tobii). We also give some general information about eye movement parameters during reading and a brief over- view of main models of eye movement control in reading (SWIFT, E-Z Reader). These models take into account a significant amount of empirical data and simulate the interaction of oculo- motor and cognitive processes involved in reading. Differences between the models, as well as different interpretations allowed within the same model, reflect the complexity of reading and the ongoing discussion about the processes involved in it. The section ends up with the pros and cons of using LCD and CRT displays in eye-tracking studies.


Author(s):  
Maryam A. AlJassmi ◽  
Kayleigh L. Warrington ◽  
Victoria A. McGowan ◽  
Sarah J. White ◽  
Kevin B. Paterson

AbstractContextual predictability influences both the probability and duration of eye fixations on words when reading Latinate alphabetic scripts like English and German. However, it is unknown whether word predictability influences eye movements in reading similarly for Semitic languages like Arabic, which are alphabetic languages with very different visual and linguistic characteristics. Such knowledge is nevertheless important for establishing the generality of mechanisms of eye-movement control across different alphabetic writing systems. Accordingly, we investigated word predictability effects in Arabic in two eye-movement experiments. Both produced shorter fixation times for words with high compared to low predictability, consistent with previous findings. Predictability did not influence skipping probabilities for (four- to eight-letter) words of varying length and morphological complexity (Experiment 1). However, it did for short (three- to four-letter) words with simpler structures (Experiment 2). We suggest that word-skipping is reduced, and affected less by contextual predictability, in Arabic compared to Latinate alphabetic reading, because of specific orthographic and morphological characteristics of the Arabic script.


2019 ◽  
Vol 50 (2) ◽  
pp. 500-512
Author(s):  
Li Zhang ◽  
Guoli Yan ◽  
Li Zhou ◽  
Zebo Lan ◽  
Valerie Benson

Abstract The current study examined eye movement control in autistic (ASD) children. Simple targets were presented in isolation, or with central, parafoveal, or peripheral distractors synchronously. Sixteen children with ASD (47–81 months) and nineteen age and IQ matched typically developing children were instructed to look to the target as accurately and quickly as possible. Both groups showed high proportions (40%) of saccadic errors towards parafoveal and peripheral distractors. For correctly executed eye movements to the targets, centrally presented distractors produced the longest latencies (time taken to initiate eye movements), followed by parafoveal and peripheral distractor conditions. Central distractors had a greater effect in the ASD group, indicating evidence for potential atypical voluntary attentional control in ASD children.


2021 ◽  
pp. 1-33
Author(s):  
Sixin Liao ◽  
Lili Yu ◽  
Jan-Louis Kruger ◽  
Erik D. Reichle

Abstract This study investigated how semantically relevant auditory information might affect the reading of subtitles, and if such effects might be modulated by the concurrent video content. Thirty-four native Chinese speakers with English as their second language watched video with English subtitles in six conditions defined by manipulating the nature of the audio (Chinese/L1 audio vs. English/L2 audio vs. no audio) and the presence versus absence of video content. Global eye-movement analyses showed that participants tended to rely less on subtitles with Chinese or English audio than without audio, and the effects of audio were more pronounced in the presence of video presentation. Lexical processing of subtitles was not modulated by the audio. However, Chinese audio, which presumably obviated the need to read the subtitles, resulted in more superficial post-lexical processing of the subtitles relative to either the English or no audio. On the contrary, English audio accentuated post-lexical processing of the subtitles compared with Chinese audio or no audio, indicating that participants might use English audio to support subtitle reading (or vice versa) and thus engaged in deeper processing of the subtitles. These findings suggest that, in multimodal reading situations, eye movements are not only controlled by processing difficulties associated with properties of words (e.g., their frequency and length) but also guided by metacognitive strategies involved in monitoring comprehension and its online modulation by different information sources.


Sign in / Sign up

Export Citation Format

Share Document