COMPUTER ASSISTED VERIFICATION OF CHAOS IN THREE-NEURON CELLULAR NEURAL NETWORKS

2007 ◽  
Vol 17 (12) ◽  
pp. 4381-4386 ◽  
Author(s):  
QUAN YUAN ◽  
XIAO-SONG YANG

In this paper, we study a new class of simple three-neuron chaotic cellular neural networks with very simple connection matrices. To study the chaotic behavior in these cellular neural networks demonstrated in numerical studies, we resort to Poincaré section and Poincaré map technique and present a rigorous verification of the existence of horseshoe chaos using topological horseshoe theory and the estimate of topological entropy in derived Poincaré maps.

2007 ◽  
Vol 17 (02) ◽  
pp. 583-587 ◽  
Author(s):  
XIAO-SONG YANG ◽  
QINGDU LI

In this paper, it is shown that chaos can take place in simple three-dimensional cellular neural networks with connection matrices satisfying Dale's rule. In addition, a rigorous computer-assisted verification of chaoticity in these cellular neural networks is given by virtue of topological horseshoe theory.


2006 ◽  
Vol 16 (09) ◽  
pp. 2729-2736 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

This paper presents a new class of chaotic and hyperchaotic low dimensional cellular neural networks modeled by ordinary differential equations with some simple connection matrices. The chaoticity of these neural networks is indicated by positive Lyapunov exponents calculated by a computer.


2011 ◽  
Vol 21 (03) ◽  
pp. 885-895 ◽  
Author(s):  
WEN-ZHI HUANG ◽  
YAN HUANG

Chaos, bifurcation and robustness of a new class of Hopfield neural networks are investigated. Numerical simulations show that the simple Hopfield neural networks can display chaotic attractors and limit cycles for different parameters. The Lyapunov exponents are calculated, the bifurcation plot and several important phase portraits are presented as well. By virtue of horseshoes theory in dynamical systems, rigorous computer-assisted verifications for chaotic behavior of the system with certain parameters are given, and here also presents a discussion on the robustness of the original system. Besides this, quantitative descriptions of the complexity of these systems are also given, and a robustness analysis of the system is presented too.


2006 ◽  
Vol 16 (01) ◽  
pp. 157-161 ◽  
Author(s):  
XIAO-SONG YANG ◽  
QINGDU LI

In this paper, we demonstrate chaos in low dimensional cellular neural networks for some weight matrices. To verify chaoticity of the dynamics in these cellular neural networks, we consider a cross-section properly chosen for the attractors obtained and study the dynamics of the corresponding Poincaré maps, and rigorously verify the existence of horseshoe in the manner of computer-assisted proof arguments.


2007 ◽  
Vol 17 (03) ◽  
pp. 953-963 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this paper we demonstrate chaos, two-tori and limit cycles in a new family of Cellular Neural Networks which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, the bifurcation plots are presented as well. Furthermore, we confirm the nature of limit cycle, chaos and two-tori by studying Poincaré maps.


2008 ◽  
Vol 18 (08) ◽  
pp. 2391-2396 ◽  
Author(s):  
QUAN YUAN ◽  
XIAO-SONG YANG

In this paper, chaos in the smooth Chua's equation is revisited. To confirm the chaotic behavior in the smooth Chua's equation demonstrated in numerical studies, we resort to Poincaré section and Poincaré map technique and present a computer assisted verification of existence of horseshoe chaos by virtue of topological horseshoes theory.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hu Wang ◽  
Yongguang Yu ◽  
Guoguang Wen

The dynamical behaviors of the Lorenz-84 atmospheric circulation model are investigated based on qualitative theory and numerical simulations. The stability and local bifurcation conditions of the Lorenz-84 atmospheric circulation model are obtained. It is also shown that when the bifurcation parameter exceeds a critical value, the Hopf bifurcation occurs in this model. Then, the conditions of the supercritical and subcritical bifurcation are derived through the normal form theory. Finally, the chaotic behavior of the model is also discussed, the bifurcation diagrams and Lyapunov exponents spectrum for the corresponding parameter are obtained, and the parameter interval ranges of limit cycle and chaotic attractor are calculated in further. Especially, a computer-assisted proof of the chaoticity of the model is presented by a topological horseshoe theory.


2006 ◽  
Vol 16 (04) ◽  
pp. 1019-1021 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this letter we report a new class of chaotic three-neuron cellular neural networks that are described by special three-dimensional autonomous ordinary differential equations.


2003 ◽  
Vol 12 (04) ◽  
pp. 417-433 ◽  
Author(s):  
M. BIEY ◽  
P. CHECCO ◽  
M. GILLI

The dynamic behavior of first-order autonomous space invariant cellular neural networks (CNNs) is investigated. It is shown that complex dynamics may occur in very simple CNN structures, described by two-dimensional templates that present only vertical and horizontal couplings. The bifurcation processes are analyzed through the computation of the limit cycle Floquet's multipliers, the evaluation of the Lyapunov exponents and of the signal spectra. As a main result a detailed and accurate two-dimensional bifurcation diagram is reported. The diagram allows one to distinguish several regions in the parameter space of a single CNN. They correspond to stable, periodic, quasi-periodic, and chaotic behavior, respectively. In particular it is shown that chaotic regions can be reached through two different routes: period doubling and torus breakdown. We remark that most practical CNN implementations exploit first order cells and space-invariant templates: so far only a few examples of complex dynamics and no complete bifurcation analysis have been presented for such networks.


1998 ◽  
Vol 08 (07) ◽  
pp. 1527-1539 ◽  
Author(s):  
P. Arena ◽  
R. Caponetto ◽  
L. Fortuna ◽  
D. Porto

In this paper a new class of Cellular Neural Networks (CNNs) is introduced. The peculiarity of the new CNN model consists in replacing the traditional first order cell with a noninteger order one. The introduction of fractional order cells, with a suitable choice of the coupling parameters, leads to the onset of chaos in a two-cell system of a total order of less than three. A theoretical approach, based on the interaction between equilibrium points and limit cycles, is used to discover chaotic motions in fractional CNNs.


Sign in / Sign up

Export Citation Format

Share Document