Stochastic Response of a Vibro-Impact System by Path Integration Based on Generalized Cell Mapping Method

2014 ◽  
Vol 24 (10) ◽  
pp. 1450129 ◽  
Author(s):  
Chao Li ◽  
Wei Xu ◽  
Xiaole Yue

The generalized cell mapping method is extended to study the response of a vibro-impact system with white noise excitation. The transient and steady-state responses of a Duffing–van der Pol vibro-impact system under white noise excitation are obtained by using this method. The accuracy of the method is verified by comparison with Monte Carlo simulation results. In addition, stochastic P-bifurcation for different parameters is considered, and several special forms are observed in this paper.

2015 ◽  
Vol 82 (11) ◽  
Author(s):  
Fu-Rui Xiong ◽  
Zhi-Chang Qin ◽  
Qian Ding ◽  
Carlos Hernández ◽  
Jesús Fernandez ◽  
...  

The cell mapping methods were originated by Hsu in 1980s for global analysis of nonlinear dynamical systems that can have multiple steady-state responses including equilibrium states, periodic motions, and chaotic attractors. The cell mapping methods have been applied to deterministic, stochastic, and fuzzy dynamical systems. Two important extensions of the cell mapping method have been developed to improve the accuracy of the solutions obtained in the cell state space: the interpolated cell mapping (ICM) and the set-oriented method with subdivision technique. For a long time, the cell mapping methods have been applied to dynamical systems with low dimension until now. With the advent of cheap dynamic memory and massively parallel computing technologies, such as the graphical processing units (GPUs), global analysis of moderate- to high-dimensional nonlinear dynamical systems becomes feasible. This paper presents a parallel cell mapping method for global analysis of nonlinear dynamical systems. The simple cell mapping (SCM) and generalized cell mapping (GCM) are implemented in a hybrid manner. The solution process starts with a coarse cell partition to obtain a covering set of the steady-state responses, followed by the subdivision technique to enhance the accuracy of the steady-state responses. When the cells are small enough, no further subdivision is necessary. We propose to treat the solutions obtained by the cell mapping method on a sufficiently fine grid as a database, which provides a basis for the ICM to generate the pointwise approximation of the solutions without additional numerical integrations of differential equations. A modified global analysis of nonlinear systems with transient states is developed by taking advantage of parallel computing without subdivision. To validate the parallelized cell mapping techniques and to demonstrate the effectiveness of the proposed method, a low-dimensional dynamical system governed by implicit mappings is first presented, followed by the global analysis of a three-dimensional plasma model and a six-dimensional Lorenz system. For the six-dimensional example, an error analysis of the ICM is conducted with the Hausdorff distance as a metric.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yajie Li ◽  
Zhiqiang Wu ◽  
Guoqi Zhang ◽  
Feng Wang ◽  
Yuancen Wang

Abstract The stochastic P-bifurcation behavior of a bistable Van der Pol system with fractional time-delay feedback under Gaussian white noise excitation is studied. Firstly, based on the minimal mean square error principle, the fractional derivative term is found to be equivalent to the linear combination of damping force and restoring force, and the original system is further simplified to an equivalent integer order system. Secondly, the stationary Probability Density Function (PDF) of system amplitude is obtained by stochastic averaging, and the critical parametric conditions for stochastic P-bifurcation of system amplitude are determined according to the singularity theory. Finally, the types of stationary PDF curves of system amplitude are qualitatively analyzed by choosing the corresponding parameters in each area divided by the transition set curves. The consistency between the analytical solutions and Monte Carlo simulation results verifies the theoretical analysis in this paper.


2018 ◽  
Vol 28 (13) ◽  
pp. 1830043 ◽  
Author(s):  
Meng Su ◽  
Wei Xu ◽  
Guidong Yang

In this paper, the stationary response of a van der Pol vibro-impact system with Coulomb friction excited by Gaussian white noise is studied. The Zhuravlev nonsmooth transformation of the state variables is utilized to transform the original system to a new system without the impact term. Then, the stochastic averaging method is applied to the equivalent system to obtain the stationary probability density functions (pdfs). The accuracy of the analytical results obtained from the proposed procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different damping coefficients, restitution coefficients, amplitudes of friction and noise intensities on the response are discussed. Additionally, stochastic P-bifurcations are explored.


2018 ◽  
Vol 28 (02) ◽  
pp. 1830003 ◽  
Author(s):  
Xiao-Ming Liu ◽  
Jun Jiang ◽  
Ling Hong ◽  
Dafeng Tang

In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.


1986 ◽  
Vol 53 (3) ◽  
pp. 702-710 ◽  
Author(s):  
H. M. Chiu ◽  
C. S. Hsu

In this second part of the two-part paper we demonstrate the viability of the compatible simple and generalized cell mapping method by applying it to various deterministic and stochastic problems. First we consider deterministic problems with non-chaotic responses. For this class of problems we show how system responses and domains of attraction can be obtained by a refining procedure of the present method. Then, we consider stochastic problems with stochasticity lying in system parameters or excitation. Next, deterministic systems with chaotic responses are considered. By the present method, finding the statistical responses of such systems under random excitation also presents no difficulties. Some of the systems studied here are well-known. New results are, however, also obtained. These are results on Duffing systems with a stochastic coefficient, the global results of a Duffing system shown in Section 4, the results on strongly nonlinear Duffing systems under random excitations reported in Section 7.2, and the strange attractor results for systems subjected to random excitations.


2003 ◽  
Vol 13 (10) ◽  
pp. 3115-3123 ◽  
Author(s):  
WEI XU ◽  
QUN HE ◽  
TONG FANG ◽  
HAIWU RONG

Stochastic bifurcation of a Duffing system subject to a combination of a deterministic harmonic excitation and a white noise excitation is studied in detail by the generalized cell mapping method using digraph. It is found that under certain conditions there exist two stable invariant sets in the phase space, associated with the randomly perturbed steady-state motions, which may be called stochastic attractors. Each attractor owns its attractive basin, and the attractive basins are separated by boundaries. Along with attractors there also exists an unstable invariant set, which might be called a stochastic saddle as well, and stochastic bifurcation always occurs when a stochastic attractor collides with a stochastic saddle. As an alternative definition, stochastic bifurcation may be defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value. This definition applies equally well either to randomly perturbed motions, or to purely deterministic motions. Our study reveals that the generalized cell mapping method with digraph is also a powerful tool for global analysis of stochastic bifurcation. By this global analysis the mechanism of development, occurrence and evolution of stochastic bifurcation can be explored clearly and vividly.


Sign in / Sign up

Export Citation Format

Share Document