Multistability in the Lorenz System: A Broken Butterfly

2014 ◽  
Vol 24 (10) ◽  
pp. 1450131 ◽  
Author(s):  
Chunbiao Li ◽  
Julien Clinton Sprott

In this paper, the dynamical behavior of the Lorenz system is examined in a previously unexplored region of parameter space, in particular, where r is zero and b is negative. For certain values of the parameters, the classic butterfly attractor is broken into a symmetric pair of strange attractors, or it shrinks into a small attractor basin intermingled with the basins of a symmetric pair of limit cycles, which means that the system is bistable or tristable under certain conditions. Although the resulting system is no longer a plausible model of fluid convection, it may have application to other physical systems.

2001 ◽  
Vol 11 (07) ◽  
pp. 1989-1996 ◽  
Author(s):  
JIN MAN JOO ◽  
JIN BAE PARK

This paper presents an approach for the control of the Lorenz system. We first show that the controlled Lorenz system is differentially flat and then compute the flat output of the Lorenz system. A two degree of freedom design approach is proposed such that the generation of full state feasible trajectory incorporates with the design of a tracking controller via the flat output. The stabilization of an equilibrium state and the tracking of a feasible state trajectory are illustrated.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750128 ◽  
Author(s):  
Anda Xiong ◽  
Julien C. Sprott ◽  
Jingxuan Lyu ◽  
Xilu Wang

The famous Lorenz system is studied and analyzed for a particular set of parameters originally proposed by Lorenz. With those parameters, the system has a single globally attracting strange attractor, meaning that almost all initial conditions in its 3D state space approach the attractor as time advances. However, with a slight change in one of the parameters, the chaotic attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-stable system has three intertwined basins of attraction. The advent of 3D printers now makes it possible to visualize the topology of such basins of attraction as the results presented here illustrate.


2019 ◽  
Vol 29 (10) ◽  
pp. 1950139 ◽  
Author(s):  
Qiujian Huang ◽  
Aimin Liu ◽  
Yongjian Liu

In this paper, the research of the Jacobi stability of the Chen system is performed by using the KCC-theory. By associating a nonlinear connection and a Berwald connection, five geometrical invariants of the Chen system are obtained. The Jacobi stability of the Chen system at equilibrium points and a periodic orbit is investigated in terms of the eigenvalues of the deviation curvature tensor. The obtained results show that the origin is always Jacobi unstable, while the Jacobi stability of the other two nonzero equilibrium points depends on the values of the parameters. And a periodic orbit of the Chen system is proved to be also Jacobi unstable. Furthermore, Jacobi stability regions of the Chen system and the Lorenz system are compared. Finally, the dynamical behavior of the components of the deviation vector near the equilibrium points is also discussed.


Author(s):  
L. G. Crespo ◽  
J. Q. Sun

This paper presents a control study of the Lorenz system by using feedback linearization. The effects of the state transformation on the dynamics of the Lorenz system are studied first. Then, composite controllers are developed for both stabilization and tracking of the system. The controls are designed to overcome the barrier in controllability imposed by the state transformation. The transition through the manifold defined by such a singularity is achieved by inducing the chaotic response within a boundary layer that contains the singularity. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole state space and the need for high control efforts is substantially mitigated. Tracking problems that involve single and cooperative objectives are studied by using the differential flatness property of the system. A good understanding of the system dynamics proves to be invaluable in the design of better controls. In all numerical examples, the proposed approach led to excellent control performances.


1999 ◽  
Vol 09 (07) ◽  
pp. 1459-1463 ◽  
Author(s):  
MARCO MONTI ◽  
WILLIAM B. PARDO ◽  
JONATHAN A. WALKENSTEIN ◽  
EPAMINONDAS ROSA ◽  
CELSO GREBOGI

The largest Lyapunov exponent of the Lorenz system is used as a measure of chaotic behavior to construct parameter space color maps. Each color in these maps corresponds to different values of the Lyapunov exponent and indicates, in parameter space, the locations of different levels of chaos for the Lorenz system. Practical applications of these maps include moving in parameter space from place to place without leaving a region of specific behavior of the system.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450086 ◽  
Author(s):  
J. C. Sprott ◽  
Xiong Wang ◽  
Guanrong Chen

This letter reports an interesting finding that the parametric Lorenz system and the parametric Chen system "shake hands" at a particular point of their common parameter space, as the time variable t → +∞ in the Lorenz system while t → -∞ in the Chen system. This helps better clarify and understand the relationship between these two closely related but topologically nonequivalent chaotic systems.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1135 ◽  
Author(s):  
Stefan Andrei Irimiciuc ◽  
Florin Enescu ◽  
Andrei Agop ◽  
Maricel Agop

An innovative theoretical model is developed on the backbone of a classical Lorenz system. A mathematical representation of a differential Lorenz system is transposed into a fractal space and reduced to an integral form. In such a conjecture, the Lorenz variables will operate simultaneously on two manifolds, generating two transformation groups, one corresponding to the space coordinates transformation and another one to the scale resolution transformation. Since these groups are isomorphs various types isometries become functional. The Lorenz system was further adapted to describe the dynamics of ejected particles as a result of laser matter interaction in a fractal paradigm. The simulations were focused on the dynamics of charged particles, and showcase the presence of current oscillations, a heterogenous velocity distribution and multi-structuring at different interaction scales. The theoretical predictions were compared with the experimental data acquired with noninvasive diagnostic techniques. The experimental data confirm the multi-structure scenario and the oscillatory behavior predicted by the mathematical model.


2005 ◽  
Vol 22 (11) ◽  
pp. 2780-2783 ◽  
Author(s):  
Yang Shi-Pu ◽  
Zhu Ke-Qin ◽  
Zhou Xiao-Zhou

2014 ◽  
Vol 24 (03) ◽  
pp. 1450034 ◽  
Author(s):  
Chunbiao Li ◽  
J. C. Sprott

A new simple four-dimensional equilibrium-free autonomous ODE system is described. The system has seven terms, two quadratic nonlinearities, and only two parameters. Its Jacobian matrix everywhere has rank less than 4. It is hyperchaotic in some regions of parameter space, while in other regions it has an attracting torus that coexists with either a symmetric pair of strange attractors or with a symmetric pair of limit cycles whose basin boundaries have an intricate fractal structure. In other regions of parameter space, it has three coexisting limit cycles and Arnold tongues. Since there are no equilibria, all the attractors are hidden. This combination of features has not been previously reported in any other system, especially one as simple as this.


Sign in / Sign up

Export Citation Format

Share Document