Plankton Population and Cholera Disease Transmission: A Mathematical Modeling Study

2020 ◽  
Vol 30 (04) ◽  
pp. 2050054
Author(s):  
Prabir Panja

This paper describes a cholera disease transmission model in the human population through the consumption of zooplankton as food by humans. Here the plankton population is classified into two subpopulations such as phytoplankton and zooplankton. Also, human population is classified into two subpopulations such as susceptible human and infected human. The proposed system reflects the impacts of using time delay in the cholera disease transmission. Different possible equilibrium points of our proposed system have been determined. Here local and global stabilities of our proposed system have been analyzed. The existence of Hopf bifurcation has been studied at the interior equilibrium point. The normal form method and center manifold theorem have been used to test the nature of Hopf bifurcation. It is observed that the interior equilibrium is locally asymptotically stable when the time delay in disease transmission term is large, while the change of stability of positive equilibrium will cause a bifurcating periodic solution at the time delay [Formula: see text] to be at less than its critical value. Finally, some numerical simulation results have been presented for the better understanding of our proposed system.

2017 ◽  
Vol 27 (11) ◽  
pp. 1750174 ◽  
Author(s):  
Atasi Patra Maiti ◽  
B. Dubey

To understand the dynamics of a fishery system, a nonlinear mathematical model is proposed and analyzed. In an aquatic environment, we considered two populations: one is prey and another is predator. Here both the fish populations grow logistically and interaction between them is of Crowley–Martin type functional response. It is assumed that both the populations are harvested and the harvesting effort is assumed to be dynamical variable and tax is considered as a control variable. The existence of equilibrium points and their local stability are examined. The existence of Hopf-bifurcation, stability and direction of Hopf-bifurcation are also analyzed with the help of Center Manifold theorem and normal form theory. The global stability behavior of the positive equilibrium point is also discussed. In order to find the value of optimal tax, the optimal harvesting policy is used. To verify our analytical findings, an extensive numerical simulation is carried out for this model system.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Liu

A delayed SEIQRS model for the transmission of malicious objects in computer network is considered in this paper. Local stability of the positive equilibrium of the model and existence of local Hopf bifurcation are investigated by regarding the time delay due to the temporary immunity period after which a recovered computer may be infected again. Further, the properties of the Hopf bifurcation are studied by using the normal form method and center manifold theorem. Numerical simulations are also presented to support the theoretical results.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050127
Author(s):  
Menghan Chen ◽  
Jinchen Ji ◽  
Haihong Liu ◽  
Fang Yan

The main aim of this paper is to study the oscillatory behaviors of gene expression networks in quorum-sensing system with time delay. The stability of the unique positive equilibrium and the existence of Hopf bifurcation are investigated by choosing the time delay as the bifurcation parameter and by applying the bifurcation theory. The explicit criteria determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are developed based on the normal form theory and the center manifold theorem. Numerical simulations demonstrate good agreements with the theoretical results. Results of this paper indicate that the time delay plays a crucial role in the regulation of the dynamic behaviors of quorum-sensing system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Yougang Wang ◽  
Luca Guerrini

This paper is concerned with a delayed SVEIR worm propagation model with saturated incidence. The main objective is to investigate the effect of the time delay on the model. Sufficient conditions for local stability of the positive equilibrium and existence of a Hopf bifurcation are obtained by choosing the time delay as the bifurcation parameter. Particularly, explicit formulas determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived by using the normal form theory and the center manifold theorem. Numerical simulations for a set of parameter values are carried out to illustrate the analytical results.


2020 ◽  
Vol 13 (05) ◽  
pp. 2050034
Author(s):  
Chunyan Gao ◽  
Haihong Liu ◽  
Zengrong Liu ◽  
Yuan Zhang ◽  
Fang Yan

Biological experiments clarify that p53-Mdm2 module is the core of tumor network and p53 oscillation plays an important role in determining the tumor cell fate. In this paper, we investigate the effect of time delay on the oscillatory behavior induced by Hopf bifurcation in p53-Mdm2 system. First, the stability of the unique positive equilibrium point and the existence of Hopf bifurcation are investigated by using the time delay as the bifurcation parameter and by applying the bifurcation theory. Second, the explicit criteria determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are developed based on the normal form theory and the center manifold theorem. In addition, the combination of numerical simulation results and theoretical calculation results indicates that time delays in p53-Mdm2 system are critical for p53 oscillations. The results may help us to better understand the biological functions of p53 pathway and provide clues for treatment of cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ming Zhao

This paper is concerned with a semiratio-dependent predator-prey system with nonmonotonic functional response and two delays. It is shown that the positive equilibrium of the system is locally asymptotically stable when the time delay is small enough. Change of stability of the positive equilibrium will cause bifurcating periodic solutions as the time delay passes through a sequence of critical values. The properties of Hopf bifurcation such as direction and stability are determined by using the normal form method and center manifold theorem. Numerical simulations confirm our theoretical findings.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Hongwei Luo ◽  
Jiangang Zhang ◽  
Wenju Du ◽  
Jiarong Lu ◽  
Xinlei An

A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine governing system with double delays under the four different cases. Corresponding stability theorem and Hopf bifurcation theorem of the system are obtained at equilibrium points. And then the stability of periodic solution and the direction of the Hopf bifurcation are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the correctness of the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Wanjun Xia ◽  
Soumen Kundu ◽  
Sarit Maitra

A delayed ecoepidemic model with ratio-dependent transmission rate has been proposed in this paper. Effects of the time delay due to the gestation of the predator are the main focus of our work. Sufficient conditions for local stability and existence of a Hopf bifurcation of the model are derived by regarding the time delay as the bifurcation parameter. Furthermore, properties of the Hopf bifurcation are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are carried out in order to validate our obtained theoretical results.


Sign in / Sign up

Export Citation Format

Share Document