Stability and Hopf Bifurcation Analysis of a Reduced Gierer–Meinhardt Model

2021 ◽  
Vol 31 (10) ◽  
pp. 2150149
Author(s):  
Rasoul Asheghi

In this paper, we consider a reduction of the Gierer–Meinhardt Activator–Inhibitor model. In the absence of diffusion, we determine the global dynamics of the homogeneous system. Then, we study the effect of the diffusion constants on the stability of a homogeneous steady state. By choosing a proper bifurcation parameter, we prove that, under some suitable conditions on the parameters, a generalized Hopf bifurcation occurs in the inhomogeneos model. We compute the normal form of this bifurcation up to the fifth order. Furthermore, the direction of the Hopf bifurcation is obtained by the normal form theory. Finally, we provide some numerical simulations to justify our theoretical results.

2011 ◽  
Vol 130-134 ◽  
pp. 2550-2557
Author(s):  
Yi Jing Liu ◽  
Zhi Shu Li ◽  
Xiao Mei Cai ◽  
Ya Lan Ye

The chaotic behaviors of the Arneodo’s system are investigated in this paper. Based on the Arneodo's system characteristic equation, the equilibria of the system and the conditions of Hopf bifurcations are obtained, which shows that Hopf bifurcations occur in this system. Then using the normal form theory, we give the explicit formulas which determine the stability of bifurcating periodic solutions and the direction of the Hopf bifurcation. Finally, some numerical examples are employed to demonstrate the effectiveness of the theoretical analysis.


2014 ◽  
Vol 926-930 ◽  
pp. 3314-3317
Author(s):  
Hong Bing Chen

In this paper, a predator–prey model with discrete and distributed delays is investigated. the direction of Hopf bifurcation as well as stability of periodic solution are studied. The method which we used is the normal form theory and center manifold. At last, an example showed the feasibility of results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Haiyun Bai ◽  
Yanhui Zhai

We research the dynamics of the chemostat model with time delay. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. By using the normal form theory and center manifold method, we derive the explicit formulas determining the stability and direction of bifurcating periodic solutions. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


Author(s):  
Kejun Zhuang

The paper mainly focuses on a novel hyperchaotic system. The local stability of equilibrium is analyzed and existence of Hopf bifurcation is established. Moreover, formulas for determining the stability and direction of bifurcating periodic solutions are derived by center manifold theorem and normal form theory. Finally, numerical simulation is given to illustrate the theoretical analysis.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Changjin Xu

This paper deals with a competitor-competitor-mutualist Lotka-Volterra model. A series of sufficient criteria guaranteeing the stability and the occurrence of Hopf bifurcation for the model are obtained. Several concrete formulae determine the properties of bifurcating periodic solutions by applying the normal form theory and the center manifold principle. Computer simulations are given to support the theoretical predictions. At last, biological meaning and a conclusion are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Li ◽  
Ranchao Wu

A new 4D hyperchaotic system is constructed based on the Lorenz system. The compound structure and forming mechanism of the new hyperchaotic attractor are studied via a controlled system with constant controllers. Furthermore, it is found that the Hopf bifurcation occurs in this hyperchaotic system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation as well as the stability of bifurcating periodic solutions is presented in detail by virtue of the normal form theory. Numerical simulations are given to illustrate and verify the results.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


2015 ◽  
Vol 25 (10) ◽  
pp. 1530026 ◽  
Author(s):  
Rui Yang ◽  
Yongli Song

In this paper, a diffusive activator–inhibitor model in vascular mesenchymal cells is considered. On one hand, we investigate the stability of the equilibria of the system without diffusion. On the other hand, for the unique positive equilibrium of the system with diffusion the conditions ensuring stability, existence of Hopf and steady state bifurcations are given. By applying the center manifold and normal form theory, the normal forms corresponding to Hopf bifurcation and steady state bifurcation are derived explicitly. Numerical simulations are employed to illustrate where the spatially homogeneous and nonhomogeneous periodic solutions and the steady states can emerge. The numerical results verify the obtained theoretical conclusions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


Sign in / Sign up

Export Citation Format

Share Document