Detection of Tertiary Hopf Bifurcations Arising from Mode Interactions

1997 ◽  
Vol 07 (07) ◽  
pp. 1691-1698 ◽  
Author(s):  
F. Amdjadi ◽  
P. J. Aston

In the unfolding of a mode interaction, in addition to the primary bifurcations, there are also secondary bifurcations which occur on the primary branches giving rise to mixed mode solutions. A further tertiary Hopf bifurcation arises in some cases from the mixed mode solutions. The detection of Hopf bifurcation points is a numerically expensive procedure and so we consider whether it is possible to predict the existence of the tertiary Hopf bifurcation by considering only the geometric structure of the primary and secondary branches. We show that in some cases, it is possible to show that no Hopf bifurcation exists while in other cases, more information in the form of the stability of the trivial solution is required to determine whether or not the Hopf bifurcation exists. An algorithm for determining the existence of the Hopf bifurcation is given.

2009 ◽  
Vol 19 (11) ◽  
pp. 3733-3751 ◽  
Author(s):  
SUQI MA ◽  
ZHAOSHENG FENG ◽  
QISHAI LU

In this paper, we are concerned with the Rose–Hindmarsh model with time delay. By applying the generalized Sturm criterion, a number of imaginary roots of the characteristic equation are classified. The absolutely stable regions for any value of time delay are detected. By the continuous software DDE-Biftool, both the Hopf bifurcation curves and double Hopf bifurcation points are illustrated in parametric spaces. The normal form and universal unfolding at double Hopf bifurcation points are considered by the center manifold method. Some examples also indicate that the corresponding unique attractor near each double Hopf point is asymptotically stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2013 ◽  
Vol 46 (1) ◽  
Author(s):  
M. T. Yassen ◽  
M. M. El-Dessoky ◽  
E. Saleh ◽  
E. S. Aly

AbstractIn this paper, we analyze the dynamical behaviors of Liu system using the complementary-cluster energy-barrier criterion (CCEBC). Moreover, the Hopf bifurcation of this system is investigated using the first Lyapunov coefficient. Also, it is proved that this system has two Hopf bifurcation points, at which these Hopf bifurcations are non degenerate and subcritical.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 725
Author(s):  
Hassan Yahya Alfifi

This paper describes the stability and Hopf bifurcation analysis of the Brusselator system with delayed feedback control in the single domain of a reaction–diffusion cell. The Galerkin analytical technique is used to present a system equation composed of ordinary differential equations. The condition able to determine the Hopf bifurcation point is found. Full maps of the Hopf bifurcation regions for the interacting chemical species are shown and discussed, indicating that the time delay, feedback control, and diffusion parameters can play a significant and important role in the stability dynamics of the two concentration reactants in the system. As a result, these parameters can be changed to destabilize the model. The results show that the Hopf bifurcation points for chemical control increase as the feedback parameters increase, whereas the Hopf bifurcation points decrease when the diffusion parameters increase. Bifurcation diagrams with examples of periodic oscillation and phase-plane maps are provided to confirm all the outcomes calculated in the model. The benefits and accuracy of this work show that there is excellent agreement between the analytical results and numerical simulation scheme for all the figures and examples that are illustrated.


2013 ◽  
Vol 18 (3) ◽  
pp. 377-397
Author(s):  
Xiang Wu ◽  
Chunrui Zhang

This work explores a coupled Oregonator model. By analyzing the associated characteristic equation, linear stability is investigated and Hopf bifurcations are demonstrated, as well as the stability and direction of the Hopf bifurcation are determined by employing the normal form method and the center manifold reduction. We also discussed the Z2 equivariant property and the existence of multiple periodic solutions. Numerical simulations are presented to illustrate the results in Section 5.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650047 ◽  
Author(s):  
Jiantao Zhao ◽  
Junjie Wei

A reaction–diffusion plankton system with delay and quadratic closure term is investigated to study the interactions between phytoplankton and zooplankton. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system. Our conclusions show that diffusion can induce Turing instability, delay can influence the stability of the positive equilibrium and induce Hopf bifurcations to occur. The computational formulas which determine the properties of bifurcating periodic solutions are given by calculating the normal form on the center manifold, and some numerical simulations are carried out for illustrating the theoretical results.


Author(s):  
Gábor Orosz ◽  
Gábor Stépán

A nonlinear car-following model of highway traffic is considered, which includes the reaction-time delay of drivers. Linear stability analysis shows that the uniform flow equilibrium of the system loses its stability via Hopf bifurcations and thus oscillations can appear. The stability and amplitudes of the oscillations are determined with the help of normal-form calculations of the Hopf bifurcation that also handles the essential translational symmetry of the system. We show that the subcritical case of the Hopf bifurcation occurs robustly, which indicates the possibility of bistability. We also show how these oscillations lead to spatial wave formation as can be observed in real-world traffic flows.


2011 ◽  
Vol 130-134 ◽  
pp. 2550-2557
Author(s):  
Yi Jing Liu ◽  
Zhi Shu Li ◽  
Xiao Mei Cai ◽  
Ya Lan Ye

The chaotic behaviors of the Arneodo’s system are investigated in this paper. Based on the Arneodo's system characteristic equation, the equilibria of the system and the conditions of Hopf bifurcations are obtained, which shows that Hopf bifurcations occur in this system. Then using the normal form theory, we give the explicit formulas which determine the stability of bifurcating periodic solutions and the direction of the Hopf bifurcation. Finally, some numerical examples are employed to demonstrate the effectiveness of the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document