Exploiting Correlation Subspace to Predict Heterogeneous Cross-Project Defects

2016 ◽  
Vol 26 (09n10) ◽  
pp. 1571-1580 ◽  
Author(s):  
Ming Cheng ◽  
Guoqing Wu ◽  
Hongyan Wan ◽  
Guoan You ◽  
Mengting Yuan ◽  
...  

Cross-project defect prediction trains a prediction model using historical data from source projects and applies the model to target projects. Most previous efforts assumed the cross-project data have the same metrics set, which means the metrics used and the size of metrics set are the same. However, this assumption may not hold in practical scenarios. In addition, software defect datasets have the class-imbalance problem which increases the difficulty for the learner to predict defects. In this paper, we advance canonical correlation analysis by deriving a joint feature space for associating cross-project data. We also propose a novel support vector machine algorithm which incorporates the correlation transfer information into classifier design for cross-project prediction. Moreover, we take different misclassification costs into consideration to make the classification inclining to classify a module as a defective one, alleviating the impact of imbalanced data. The experimental results show that our method is more effective compared to state-of-the-art methods.

2021 ◽  
Vol 9 (1) ◽  
pp. 52-68
Author(s):  
Lipika Goel ◽  
Mayank Sharma ◽  
Sunil Kumar Khatri ◽  
D. Damodaran

Often, the prior defect data of the same project is unavailable; researchers thought whether the defect data of the other projects can be used for prediction. This made cross project defect prediction an open research issue. In this approach, the training data often suffers from class imbalance problem. Here, the work is directed on homogeneous cross-project defect prediction. A novel ensemble model that will perform in dual fold is proposed. Firstly, it will handle the class imbalance problem of the dataset. Secondly, it will perform the prediction of the target class. For handling the imbalance problem, the training dataset is divided into data frames. Each data frame will be balanced. An ensemble model using the maximum voting of all random forest classifiers is implemented. The proposed model shows better performance in comparison to the other baseline models. Wilcoxon signed rank test is performed for validation of the proposed model.


2020 ◽  
Vol 10 (22) ◽  
pp. 8059
Author(s):  
Haonan Tong ◽  
Shihai Wang ◽  
Guangling Li

Imbalanced data are a major factor for degrading the performance of software defect models. Software defect dataset is imbalanced in nature, i.e., the number of non-defect-prone modules is far more than that of defect-prone ones, which results in the bias of classifiers on the majority class samples. In this paper, we propose a novel credibility-based imbalance boosting (CIB) method in order to address the class-imbalance problem in software defect proneness prediction. The method measures the credibility of synthetic samples based on their distribution by introducing a credit factor to every synthetic sample, and proposes a weight updating scheme to make the base classifiers focus on synthetic samples with high credibility and real samples. Experiments are performed on 11 NASA datasets and nine PROMISE datasets by comparing CIB with MAHAKIL, AdaC2, AdaBoost, SMOTE, RUS, No sampling method in terms of four performance measures, i.e., area under the curve (AUC), F1, AGF, and Matthews correlation coefficient (MCC). Wilcoxon sign-ranked test and Cliff’s δ are separately used to perform statistical test and calculate effect size. The experimental results show that CIB is a more promising alternative for addressing the class-imbalance problem in software defect-prone prediction as compared with previous methods.


Author(s):  
Shaojian Qiu ◽  
Lu Lu ◽  
Siyu Jiang ◽  
Yang Guo

Machine-learning-based software defect prediction (SDP) methods are receiving great attention from the researchers of intelligent software engineering. Most existing SDP methods are performed under a within-project setting. However, there usually is little to no within-project training data to learn an available supervised prediction model for a new SDP task. Therefore, cross-project defect prediction (CPDP), which uses labeled data of source projects to learn a defect predictor for a target project, was proposed as a practical SDP solution. In real CPDP tasks, the class imbalance problem is ubiquitous and has a great impact on performance of the CPDP models. Unlike previous studies that focus on subsampling and individual methods, this study investigated 15 imbalanced learning methods for CPDP tasks, especially for assessing the effectiveness of imbalanced ensemble learning (IEL) methods. We evaluated the 15 methods by extensive experiments on 31 open-source projects derived from five datasets. Through analyzing a total of 37504 results, we found that in most cases, the IEL method that combined under-sampling and bagging approaches will be more effective than the other investigated methods.


Author(s):  
Hartono Hartono ◽  
Opim Salim Sitompul ◽  
Tulus Tulus ◽  
Erna Budhiarti Nababan

Class imbalance occurs when instances in a class are much higher than in other classes. This machine learning major problem can affect the predicted accuracy. Support Vector Machine (SVM) is robust and precise method in handling class imbalance problem but weak in the bias data distribution, Biased Support Vector Machine (BSVM) became popular choice to solve the problem. BSVM provide better control sensitivity yet lack accuracy compared to general SVM. This study proposes the integration of BSVM and SMOTEBoost to handle class imbalance problem. Non Support Vector (NSV) sets from negative samples and Support Vector (SV) sets from positive samples will undergo a Weighted-SMOTE process. The results indicate that implementation of Biased Support Vector Machine and Weighted-SMOTE achieve better accuracy and sensitivity.


2019 ◽  
Vol 8 (2) ◽  
pp. 2463-2468

Learning of class imbalanced data becomes a challenging issue in the machine learning community as all classification algorithms are designed to work for balanced datasets. Several methods are available to tackle this issue, among which the resampling techniques- undersampling and oversampling are more flexible and versatile. This paper introduces a new concept for undersampling based on Center of Gravity principle which helps to reduce the excess instances of majority class. This work is suited for binary class problems. The proposed technique –CoGBUS- overcomes the class imbalance problem and brings best results in the study. We take F-Score, GMean and ROC for the performance evaluation of the method.


2019 ◽  
Vol 490 (4) ◽  
pp. 5424-5439 ◽  
Author(s):  
Ping Guo ◽  
Fuqing Duan ◽  
Pei Wang ◽  
Yao Yao ◽  
Qian Yin ◽  
...  

ABSTRACT Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments, the volume and rate of data acquisition have grown exponentially. This development necessitates a focus on artificial intelligence (AI) technologies that can mine large astronomical data sets. Automatic pulsar candidate identification (APCI) can be considered as a task determining potential candidates for further investigation and eliminating the noise of radio-frequency interference and other non-pulsar signals. As reported in the existing literature, AI techniques, especially convolutional neural network (CNN)-based techniques, have been adopted for APCI. However, it is challenging to enhance the performance of CNN-based pulsar identification because only an extremely limited number of real pulsar samples exist, which results in a crucial class imbalance problem. To address these problems, we propose a framework that combines a deep convolution generative adversarial network (DCGAN) with a support vector machine (SVM). The DCGAN is used as a sample generation and feature learning model, and the SVM is adopted as the classifier for predicting the label of a candidate at the inference stage. The proposed framework is a novel technique, which not only can solve the class imbalance problem but also can learn the discriminative feature representations of pulsar candidates instead of computing hand-crafted features in the pre-processing steps. The proposed method can enhance the accuracy of the APCI, and the computer experiments performed on two pulsar data sets verified the effectiveness and efficiency of the proposed method.


2022 ◽  
Vol 16 (3) ◽  
pp. 1-37
Author(s):  
Robert A. Sowah ◽  
Bernard Kuditchar ◽  
Godfrey A. Mills ◽  
Amevi Acakpovi ◽  
Raphael A. Twum ◽  
...  

Class imbalance problem is prevalent in many real-world domains. It has become an active area of research. In binary classification problems, imbalance learning refers to learning from a dataset with a high degree of skewness to the negative class. This phenomenon causes classification algorithms to perform woefully when predicting positive classes with new examples. Data resampling, which involves manipulating the training data before applying standard classification techniques, is among the most commonly used techniques to deal with the class imbalance problem. This article presents a new hybrid sampling technique that improves the overall performance of classification algorithms for solving the class imbalance problem significantly. The proposed method called the Hybrid Cluster-Based Undersampling Technique (HCBST) uses a combination of the cluster undersampling technique to under-sample the majority instances and an oversampling technique derived from Sigma Nearest Oversampling based on Convex Combination, to oversample the minority instances to solve the class imbalance problem with a high degree of accuracy and reliability. The performance of the proposed algorithm was tested using 11 datasets from the National Aeronautics and Space Administration Metric Data Program data repository and University of California Irvine Machine Learning data repository with varying degrees of imbalance. Results were compared with classification algorithms such as the K-nearest neighbours, support vector machines, decision tree, random forest, neural network, AdaBoost, naïve Bayes, and quadratic discriminant analysis. Tests results revealed that for the same datasets, the HCBST performed better with average performances of 0.73, 0.67, and 0.35 in terms of performance measures of area under curve, geometric mean, and Matthews Correlation Coefficient, respectively, across all the classifiers used for this study. The HCBST has the potential of improving the performance of the class imbalance problem, which by extension, will improve on the various applications that rely on the concept for a solution.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jianhong Yan ◽  
Suqing Han

Learning with imbalanced data sets is considered as one of the key topics in machine learning community. Stacking ensemble is an efficient algorithm for normal balance data sets. However, stacking ensemble was seldom applied in imbalance data. In this paper, we proposed a novel RE-sample and Cost-Sensitive Stacked Generalization (RECSG) method based on 2-layer learning models. The first step is Level 0 model generalization including data preprocessing and base model training. The second step is Level 1 model generalization involving cost-sensitive classifier and logistic regression algorithm. In the learning phase, preprocessing techniques can be embedded in imbalance data learning methods. In the cost-sensitive algorithm, cost matrix is combined with both data characters and algorithms. In the RECSG method, ensemble algorithm is combined with imbalance data techniques. According to the experiment results obtained with 17 public imbalanced data sets, as indicated by various evaluation metrics (AUC, GeoMean, and AGeoMean), the proposed method showed the better classification performances than other ensemble and single algorithms. The proposed method is especially more efficient when the performance of base classifier is low. All these demonstrated that the proposed method could be applied in the class imbalance problem.


Author(s):  
YANMIN SUN ◽  
ANDREW K. C. WONG ◽  
MOHAMED S. KAMEL

Classification of data with imbalanced class distribution has encountered a significant drawback of the performance attainable by most standard classifier learning algorithms which assume a relatively balanced class distribution and equal misclassification costs. This paper provides a review of the classification of imbalanced data regarding: the application domains; the nature of the problem; the learning difficulties with standard classifier learning algorithms; the learning objectives and evaluation measures; the reported research solutions; and the class imbalance problem in the presence of multiple classes.


Sign in / Sign up

Export Citation Format

Share Document