Pulsar candidate classification using generative adversary networks

2019 ◽  
Vol 490 (4) ◽  
pp. 5424-5439 ◽  
Author(s):  
Ping Guo ◽  
Fuqing Duan ◽  
Pei Wang ◽  
Yao Yao ◽  
Qian Yin ◽  
...  

ABSTRACT Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments, the volume and rate of data acquisition have grown exponentially. This development necessitates a focus on artificial intelligence (AI) technologies that can mine large astronomical data sets. Automatic pulsar candidate identification (APCI) can be considered as a task determining potential candidates for further investigation and eliminating the noise of radio-frequency interference and other non-pulsar signals. As reported in the existing literature, AI techniques, especially convolutional neural network (CNN)-based techniques, have been adopted for APCI. However, it is challenging to enhance the performance of CNN-based pulsar identification because only an extremely limited number of real pulsar samples exist, which results in a crucial class imbalance problem. To address these problems, we propose a framework that combines a deep convolution generative adversarial network (DCGAN) with a support vector machine (SVM). The DCGAN is used as a sample generation and feature learning model, and the SVM is adopted as the classifier for predicting the label of a candidate at the inference stage. The proposed framework is a novel technique, which not only can solve the class imbalance problem but also can learn the discriminative feature representations of pulsar candidates instead of computing hand-crafted features in the pre-processing steps. The proposed method can enhance the accuracy of the APCI, and the computer experiments performed on two pulsar data sets verified the effectiveness and efficiency of the proposed method.

2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Zhenbing Liu ◽  
Chunyang Gao ◽  
Huihua Yang ◽  
Qijia He

Sparse representation has been successfully used in pattern recognition and machine learning. However, most existing sparse representation based classification (SRC) methods are to achieve the highest classification accuracy, assuming the same losses for different misclassifications. This assumption, however, may not hold in many practical applications as different types of misclassification could lead to different losses. In real-world application, much data sets are imbalanced of the class distribution. To address these problems, we propose a cost-sensitive sparse representation based classification (CSSRC) for class-imbalance problem method by using probabilistic modeling. Unlike traditional SRC methods, we predict the class label of test samples by minimizing the misclassification losses, which are obtained via computing the posterior probabilities. Experimental results on the UCI databases validate the efficacy of the proposed approach on average misclassification cost, positive class misclassification rate, and negative class misclassification rate. In addition, we sampled test samples and training samples with different imbalance ratio and use F-measure, G-mean, classification accuracy, and running time to evaluate the performance of the proposed method. The experiments show that our proposed method performs competitively compared to SRC, CSSVM, and CS4VM.


2019 ◽  
Vol 24 (2) ◽  
pp. 104-110
Author(s):  
Duygu Sinanc Terzi ◽  
Seref Sagiroglu

Abstract The class imbalance problem, one of the common data irregularities, causes the development of under-represented models. To resolve this issue, the present study proposes a new cluster-based MapReduce design, entitled Distributed Cluster-based Resampling for Imbalanced Big Data (DIBID). The design aims at modifying the existing dataset to increase the classification success. Within the study, DIBID has been implemented on public datasets under two strategies. The first strategy has been designed to present the success of the model on data sets with different imbalanced ratios. The second strategy has been designed to compare the success of the model with other imbalanced big data solutions in the literature. According to the results, DIBID outperformed other imbalanced big data solutions in the literature and increased area under the curve values between 10 % and 24 % through the case study.


Author(s):  
Hartono Hartono ◽  
Opim Salim Sitompul ◽  
Tulus Tulus ◽  
Erna Budhiarti Nababan

Class imbalance occurs when instances in a class are much higher than in other classes. This machine learning major problem can affect the predicted accuracy. Support Vector Machine (SVM) is robust and precise method in handling class imbalance problem but weak in the bias data distribution, Biased Support Vector Machine (BSVM) became popular choice to solve the problem. BSVM provide better control sensitivity yet lack accuracy compared to general SVM. This study proposes the integration of BSVM and SMOTEBoost to handle class imbalance problem. Non Support Vector (NSV) sets from negative samples and Support Vector (SV) sets from positive samples will undergo a Weighted-SMOTE process. The results indicate that implementation of Biased Support Vector Machine and Weighted-SMOTE achieve better accuracy and sensitivity.


2022 ◽  
Vol 16 (3) ◽  
pp. 1-37
Author(s):  
Robert A. Sowah ◽  
Bernard Kuditchar ◽  
Godfrey A. Mills ◽  
Amevi Acakpovi ◽  
Raphael A. Twum ◽  
...  

Class imbalance problem is prevalent in many real-world domains. It has become an active area of research. In binary classification problems, imbalance learning refers to learning from a dataset with a high degree of skewness to the negative class. This phenomenon causes classification algorithms to perform woefully when predicting positive classes with new examples. Data resampling, which involves manipulating the training data before applying standard classification techniques, is among the most commonly used techniques to deal with the class imbalance problem. This article presents a new hybrid sampling technique that improves the overall performance of classification algorithms for solving the class imbalance problem significantly. The proposed method called the Hybrid Cluster-Based Undersampling Technique (HCBST) uses a combination of the cluster undersampling technique to under-sample the majority instances and an oversampling technique derived from Sigma Nearest Oversampling based on Convex Combination, to oversample the minority instances to solve the class imbalance problem with a high degree of accuracy and reliability. The performance of the proposed algorithm was tested using 11 datasets from the National Aeronautics and Space Administration Metric Data Program data repository and University of California Irvine Machine Learning data repository with varying degrees of imbalance. Results were compared with classification algorithms such as the K-nearest neighbours, support vector machines, decision tree, random forest, neural network, AdaBoost, naïve Bayes, and quadratic discriminant analysis. Tests results revealed that for the same datasets, the HCBST performed better with average performances of 0.73, 0.67, and 0.35 in terms of performance measures of area under curve, geometric mean, and Matthews Correlation Coefficient, respectively, across all the classifiers used for this study. The HCBST has the potential of improving the performance of the class imbalance problem, which by extension, will improve on the various applications that rely on the concept for a solution.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jianhong Yan ◽  
Suqing Han

Learning with imbalanced data sets is considered as one of the key topics in machine learning community. Stacking ensemble is an efficient algorithm for normal balance data sets. However, stacking ensemble was seldom applied in imbalance data. In this paper, we proposed a novel RE-sample and Cost-Sensitive Stacked Generalization (RECSG) method based on 2-layer learning models. The first step is Level 0 model generalization including data preprocessing and base model training. The second step is Level 1 model generalization involving cost-sensitive classifier and logistic regression algorithm. In the learning phase, preprocessing techniques can be embedded in imbalance data learning methods. In the cost-sensitive algorithm, cost matrix is combined with both data characters and algorithms. In the RECSG method, ensemble algorithm is combined with imbalance data techniques. According to the experiment results obtained with 17 public imbalanced data sets, as indicated by various evaluation metrics (AUC, GeoMean, and AGeoMean), the proposed method showed the better classification performances than other ensemble and single algorithms. The proposed method is especially more efficient when the performance of base classifier is low. All these demonstrated that the proposed method could be applied in the class imbalance problem.


Sign in / Sign up

Export Citation Format

Share Document