scholarly journals Biased support vector machine and weighted-smote in handling class imbalance problem

Author(s):  
Hartono Hartono ◽  
Opim Salim Sitompul ◽  
Tulus Tulus ◽  
Erna Budhiarti Nababan

Class imbalance occurs when instances in a class are much higher than in other classes. This machine learning major problem can affect the predicted accuracy. Support Vector Machine (SVM) is robust and precise method in handling class imbalance problem but weak in the bias data distribution, Biased Support Vector Machine (BSVM) became popular choice to solve the problem. BSVM provide better control sensitivity yet lack accuracy compared to general SVM. This study proposes the integration of BSVM and SMOTEBoost to handle class imbalance problem. Non Support Vector (NSV) sets from negative samples and Support Vector (SV) sets from positive samples will undergo a Weighted-SMOTE process. The results indicate that implementation of Biased Support Vector Machine and Weighted-SMOTE achieve better accuracy and sensitivity.

2017 ◽  
Vol 26 (03) ◽  
pp. 1750009 ◽  
Author(s):  
Dionisios N. Sotiropoulos ◽  
George A. Tsihrintzis

This paper focuses on a special category of machine learning problems arising in cases where the set of available training instances is significantly biased towards a particular class of patterns. Our work addresses the so-called Class Imbalance Problem through the utilization of an Artificial Immune System-(AIS)based classification algorithm which encodes the inherent ability of the Adaptive Immune System to mediate the exceptionally imbalanced “self” / “non-self” discrimination process. From a computational point of view, this process constitutes an extremely imbalanced pattern classification task since the vast majority of molecular patterns pertain to the “non-self” space. Our work focuses on investigating the effect of the class imbalance problem on the AIS-based classification algorithm by assessing its relative ability to deal with extremely skewed datasets when compared against two state-of-the-art machine learning paradigms such as Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs). To this end, we conducted a series of experiments on a music-related dataset where a small fraction of positive samples was to be recognized against the vast volume of negative samples. The results obtained indicate that the utilized bio-inspired classifier outperforms SVMs in detecting patterns from the minority class while its performance on the same task is competently close to the one exhibited by MLPs. Our findings suggest that the AIS-based classifier relies on its intrinsic resampling and class-balancing functionality in order to address the class imbalance problem.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Mohd Adil ◽  
Mohd Faizan Ansari ◽  
Ahmad Alahmadi ◽  
Jei-Zheng Wu ◽  
Ripon K. Chakrabortty

The cancelation of bookings puts a considerable strain on management decisions in the case of the hospitability industry. Booking cancelations restrict precise predictions and are thus a critical tool for revenue management performance. However, in recent times, thanks to the availability of considerable computing power through machine learning (ML) approaches, it has become possible to create more accurate models to predict the cancelation of bookings compared to more traditional methods. Previous studies have used several ML approaches, such as support vector machine (SVM), neural network (NN), and decision tree (DT) models for predicting hotel cancelations. However, they are yet to address the class imbalance problem that exists in the prediction of hotel cancelations. In this study, we have shortened this gap by introducing an oversampling technique to address class imbalance problems, in conjunction with machine learning algorithms to better predict hotel booking cancelations. A combination of the synthetic minority oversampling technique and the edited nearest neighbors (SMOTE-ENN) algorithm is proposed to address the problem of class imbalance. Class imbalance is a general problem that occurs when classifying which class has more examples compared to others. Our research has shown that, after addressing the class imbalance problem, the performance of a machine learning classifier improves significantly.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoqing Gu ◽  
Tongguang Ni ◽  
Hongyuan Wang

In medical datasets classification, support vector machine (SVM) is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM) for the class imbalance problem (called FSVM-CIP) is presented, which can be seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes. The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the outperformed or comparable effectiveness of FSVM-CIP.


Author(s):  
Noviyanti Santoso ◽  
Wahyu Wibowo ◽  
Hilda Hikmawati

In the data mining, a class imbalance is a problematic issue to look for the solutions. It probably because machine learning is constructed by using algorithms with assuming the number of instances in each balanced class, so when using a class imbalance, it is possible that the prediction results are not appropriate. They are solutions offered to solve class imbalance issues, including oversampling, undersampling, and synthetic minority oversampling technique (SMOTE). Both oversampling and undersampling have its disadvantages, so SMOTE is an alternative to overcome it. By integrating SMOTE in the data mining classification method such as Naive Bayes, Support Vector Machine (SVM), and Random Forest (RF) is expected to improve the performance of accuracy. In this research, it was found that the data of SMOTE gave better accuracy than the original data. In addition to the three classification methods used, RF gives the highest average AUC, F-measure, and G-means score.


Author(s):  
Vanessa Faria De Souza ◽  
Gabriela Perry

This paper presents the results literature review, carried out with the objective of identifying prevalent research goals and challenges in the prediction of student behavior in MOOCs, using Machine Learning. The results allowed recognizingthree goals: 1. Student Classification and 2. Dropout prediction. Regarding the challenges, five items were identified: 1. Incompatibility of AVAs, 2. Complexity of data manipulation, 3. Class Imbalance Problem, 4. Influence of External Factors and 5. Difficulty in manipulating data by untrained personnel.


2016 ◽  
Vol 7 (2) ◽  
pp. 43-71 ◽  
Author(s):  
Sangeeta Lal ◽  
Neetu Sardana ◽  
Ashish Sureka

Logging is an important yet tough decision for OSS developers. Machine-learning models are useful in improving several steps of OSS development, including logging. Several recent studies propose machine-learning models to predict logged code construct. The prediction performances of these models are limited due to the class-imbalance problem since the number of logged code constructs is small as compared to non-logged code constructs. No previous study analyzes the class-imbalance problem for logged code construct prediction. The authors first analyze the performances of J48, RF, and SVM classifiers for catch-blocks and if-blocks logged code constructs prediction on imbalanced datasets. Second, the authors propose LogIm, an ensemble and threshold-based machine-learning model. Third, the authors evaluate the performance of LogIm on three open-source projects. On average, LogIm model improves the performance of baseline classifiers, J48, RF, and SVM, by 7.38%, 9.24%, and 4.6% for catch-blocks, and 12.11%, 14.95%, and 19.13% for if-blocks logging prediction.


2019 ◽  
Vol 490 (4) ◽  
pp. 5424-5439 ◽  
Author(s):  
Ping Guo ◽  
Fuqing Duan ◽  
Pei Wang ◽  
Yao Yao ◽  
Qian Yin ◽  
...  

ABSTRACT Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments, the volume and rate of data acquisition have grown exponentially. This development necessitates a focus on artificial intelligence (AI) technologies that can mine large astronomical data sets. Automatic pulsar candidate identification (APCI) can be considered as a task determining potential candidates for further investigation and eliminating the noise of radio-frequency interference and other non-pulsar signals. As reported in the existing literature, AI techniques, especially convolutional neural network (CNN)-based techniques, have been adopted for APCI. However, it is challenging to enhance the performance of CNN-based pulsar identification because only an extremely limited number of real pulsar samples exist, which results in a crucial class imbalance problem. To address these problems, we propose a framework that combines a deep convolution generative adversarial network (DCGAN) with a support vector machine (SVM). The DCGAN is used as a sample generation and feature learning model, and the SVM is adopted as the classifier for predicting the label of a candidate at the inference stage. The proposed framework is a novel technique, which not only can solve the class imbalance problem but also can learn the discriminative feature representations of pulsar candidates instead of computing hand-crafted features in the pre-processing steps. The proposed method can enhance the accuracy of the APCI, and the computer experiments performed on two pulsar data sets verified the effectiveness and efficiency of the proposed method.


2022 ◽  
Vol 16 (3) ◽  
pp. 1-37
Author(s):  
Robert A. Sowah ◽  
Bernard Kuditchar ◽  
Godfrey A. Mills ◽  
Amevi Acakpovi ◽  
Raphael A. Twum ◽  
...  

Class imbalance problem is prevalent in many real-world domains. It has become an active area of research. In binary classification problems, imbalance learning refers to learning from a dataset with a high degree of skewness to the negative class. This phenomenon causes classification algorithms to perform woefully when predicting positive classes with new examples. Data resampling, which involves manipulating the training data before applying standard classification techniques, is among the most commonly used techniques to deal with the class imbalance problem. This article presents a new hybrid sampling technique that improves the overall performance of classification algorithms for solving the class imbalance problem significantly. The proposed method called the Hybrid Cluster-Based Undersampling Technique (HCBST) uses a combination of the cluster undersampling technique to under-sample the majority instances and an oversampling technique derived from Sigma Nearest Oversampling based on Convex Combination, to oversample the minority instances to solve the class imbalance problem with a high degree of accuracy and reliability. The performance of the proposed algorithm was tested using 11 datasets from the National Aeronautics and Space Administration Metric Data Program data repository and University of California Irvine Machine Learning data repository with varying degrees of imbalance. Results were compared with classification algorithms such as the K-nearest neighbours, support vector machines, decision tree, random forest, neural network, AdaBoost, naïve Bayes, and quadratic discriminant analysis. Tests results revealed that for the same datasets, the HCBST performed better with average performances of 0.73, 0.67, and 0.35 in terms of performance measures of area under curve, geometric mean, and Matthews Correlation Coefficient, respectively, across all the classifiers used for this study. The HCBST has the potential of improving the performance of the class imbalance problem, which by extension, will improve on the various applications that rely on the concept for a solution.


Sign in / Sign up

Export Citation Format

Share Document